Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-\frac{11}{3}x-\frac{2}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\left(-\frac{11}{3}\right)^{2}-4\times 7\left(-\frac{2}{3}\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -\frac{11}{3} for b, and -\frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}-4\times 7\left(-\frac{2}{3}\right)}}{2\times 7}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}-28\left(-\frac{2}{3}\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{121}{9}+\frac{56}{3}}}{2\times 7}
Multiply -28 times -\frac{2}{3}.
x=\frac{-\left(-\frac{11}{3}\right)±\sqrt{\frac{289}{9}}}{2\times 7}
Add \frac{121}{9} to \frac{56}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{11}{3}\right)±\frac{17}{3}}{2\times 7}
Take the square root of \frac{289}{9}.
x=\frac{\frac{11}{3}±\frac{17}{3}}{2\times 7}
The opposite of -\frac{11}{3} is \frac{11}{3}.
x=\frac{\frac{11}{3}±\frac{17}{3}}{14}
Multiply 2 times 7.
x=\frac{\frac{28}{3}}{14}
Now solve the equation x=\frac{\frac{11}{3}±\frac{17}{3}}{14} when ± is plus. Add \frac{11}{3} to \frac{17}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2}{3}
Divide \frac{28}{3} by 14.
x=-\frac{2}{14}
Now solve the equation x=\frac{\frac{11}{3}±\frac{17}{3}}{14} when ± is minus. Subtract \frac{17}{3} from \frac{11}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{7}
Reduce the fraction \frac{-2}{14} to lowest terms by extracting and canceling out 2.
x=\frac{2}{3} x=-\frac{1}{7}
The equation is now solved.
7x^{2}-\frac{11}{3}x-\frac{2}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-\frac{11}{3}x-\frac{2}{3}-\left(-\frac{2}{3}\right)=-\left(-\frac{2}{3}\right)
Add \frac{2}{3} to both sides of the equation.
7x^{2}-\frac{11}{3}x=-\left(-\frac{2}{3}\right)
Subtracting -\frac{2}{3} from itself leaves 0.
7x^{2}-\frac{11}{3}x=\frac{2}{3}
Subtract -\frac{2}{3} from 0.
\frac{7x^{2}-\frac{11}{3}x}{7}=\frac{\frac{2}{3}}{7}
Divide both sides by 7.
x^{2}+\left(-\frac{\frac{11}{3}}{7}\right)x=\frac{\frac{2}{3}}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{11}{21}x=\frac{\frac{2}{3}}{7}
Divide -\frac{11}{3} by 7.
x^{2}-\frac{11}{21}x=\frac{2}{21}
Divide \frac{2}{3} by 7.
x^{2}-\frac{11}{21}x+\left(-\frac{11}{42}\right)^{2}=\frac{2}{21}+\left(-\frac{11}{42}\right)^{2}
Divide -\frac{11}{21}, the coefficient of the x term, by 2 to get -\frac{11}{42}. Then add the square of -\frac{11}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{21}x+\frac{121}{1764}=\frac{2}{21}+\frac{121}{1764}
Square -\frac{11}{42} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{21}x+\frac{121}{1764}=\frac{289}{1764}
Add \frac{2}{21} to \frac{121}{1764} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{42}\right)^{2}=\frac{289}{1764}
Factor x^{2}-\frac{11}{21}x+\frac{121}{1764}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{42}\right)^{2}}=\sqrt{\frac{289}{1764}}
Take the square root of both sides of the equation.
x-\frac{11}{42}=\frac{17}{42} x-\frac{11}{42}=-\frac{17}{42}
Simplify.
x=\frac{2}{3} x=-\frac{1}{7}
Add \frac{11}{42} to both sides of the equation.