Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+9268x-61800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9268±\sqrt{9268^{2}-4\times 7\left(-61800\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 9268 for b, and -61800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9268±\sqrt{85895824-4\times 7\left(-61800\right)}}{2\times 7}
Square 9268.
x=\frac{-9268±\sqrt{85895824-28\left(-61800\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-9268±\sqrt{85895824+1730400}}{2\times 7}
Multiply -28 times -61800.
x=\frac{-9268±\sqrt{87626224}}{2\times 7}
Add 85895824 to 1730400.
x=\frac{-9268±4\sqrt{5476639}}{2\times 7}
Take the square root of 87626224.
x=\frac{-9268±4\sqrt{5476639}}{14}
Multiply 2 times 7.
x=\frac{4\sqrt{5476639}-9268}{14}
Now solve the equation x=\frac{-9268±4\sqrt{5476639}}{14} when ± is plus. Add -9268 to 4\sqrt{5476639}.
x=\frac{2\sqrt{5476639}}{7}-662
Divide -9268+4\sqrt{5476639} by 14.
x=\frac{-4\sqrt{5476639}-9268}{14}
Now solve the equation x=\frac{-9268±4\sqrt{5476639}}{14} when ± is minus. Subtract 4\sqrt{5476639} from -9268.
x=-\frac{2\sqrt{5476639}}{7}-662
Divide -9268-4\sqrt{5476639} by 14.
x=\frac{2\sqrt{5476639}}{7}-662 x=-\frac{2\sqrt{5476639}}{7}-662
The equation is now solved.
7x^{2}+9268x-61800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+9268x-61800-\left(-61800\right)=-\left(-61800\right)
Add 61800 to both sides of the equation.
7x^{2}+9268x=-\left(-61800\right)
Subtracting -61800 from itself leaves 0.
7x^{2}+9268x=61800
Subtract -61800 from 0.
\frac{7x^{2}+9268x}{7}=\frac{61800}{7}
Divide both sides by 7.
x^{2}+\frac{9268}{7}x=\frac{61800}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+1324x=\frac{61800}{7}
Divide 9268 by 7.
x^{2}+1324x+662^{2}=\frac{61800}{7}+662^{2}
Divide 1324, the coefficient of the x term, by 2 to get 662. Then add the square of 662 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1324x+438244=\frac{61800}{7}+438244
Square 662.
x^{2}+1324x+438244=\frac{3129508}{7}
Add \frac{61800}{7} to 438244.
\left(x+662\right)^{2}=\frac{3129508}{7}
Factor x^{2}+1324x+438244. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+662\right)^{2}}=\sqrt{\frac{3129508}{7}}
Take the square root of both sides of the equation.
x+662=\frac{2\sqrt{5476639}}{7} x+662=-\frac{2\sqrt{5476639}}{7}
Simplify.
x=\frac{2\sqrt{5476639}}{7}-662 x=-\frac{2\sqrt{5476639}}{7}-662
Subtract 662 from both sides of the equation.