Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+6x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 7}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 7}}{2\times 7}
Square 6.
x=\frac{-6±\sqrt{36-28}}{2\times 7}
Multiply -4 times 7.
x=\frac{-6±\sqrt{8}}{2\times 7}
Add 36 to -28.
x=\frac{-6±2\sqrt{2}}{2\times 7}
Take the square root of 8.
x=\frac{-6±2\sqrt{2}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{2}-6}{14}
Now solve the equation x=\frac{-6±2\sqrt{2}}{14} when ± is plus. Add -6 to 2\sqrt{2}.
x=\frac{\sqrt{2}-3}{7}
Divide -6+2\sqrt{2} by 14.
x=\frac{-2\sqrt{2}-6}{14}
Now solve the equation x=\frac{-6±2\sqrt{2}}{14} when ± is minus. Subtract 2\sqrt{2} from -6.
x=\frac{-\sqrt{2}-3}{7}
Divide -6-2\sqrt{2} by 14.
7x^{2}+6x+1=7\left(x-\frac{\sqrt{2}-3}{7}\right)\left(x-\frac{-\sqrt{2}-3}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{2}}{7} for x_{1} and \frac{-3-\sqrt{2}}{7} for x_{2}.