Solve for x (complex solution)
x=\frac{-1+\sqrt{6}i}{7}\approx -0.142857143+0.349927106i
x=\frac{-\sqrt{6}i-1}{7}\approx -0.142857143-0.349927106i
Graph
Share
Copied to clipboard
7x^{2}+2x+9=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}+2x+9-8=8-8
Subtract 8 from both sides of the equation.
7x^{2}+2x+9-8=0
Subtracting 8 from itself leaves 0.
7x^{2}+2x+1=0
Subtract 8 from 9.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 7}}{2\times 7}
Square 2.
x=\frac{-2±\sqrt{4-28}}{2\times 7}
Multiply -4 times 7.
x=\frac{-2±\sqrt{-24}}{2\times 7}
Add 4 to -28.
x=\frac{-2±2\sqrt{6}i}{2\times 7}
Take the square root of -24.
x=\frac{-2±2\sqrt{6}i}{14}
Multiply 2 times 7.
x=\frac{-2+2\sqrt{6}i}{14}
Now solve the equation x=\frac{-2±2\sqrt{6}i}{14} when ± is plus. Add -2 to 2i\sqrt{6}.
x=\frac{-1+\sqrt{6}i}{7}
Divide -2+2i\sqrt{6} by 14.
x=\frac{-2\sqrt{6}i-2}{14}
Now solve the equation x=\frac{-2±2\sqrt{6}i}{14} when ± is minus. Subtract 2i\sqrt{6} from -2.
x=\frac{-\sqrt{6}i-1}{7}
Divide -2-2i\sqrt{6} by 14.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
The equation is now solved.
7x^{2}+2x+9=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+2x+9-9=8-9
Subtract 9 from both sides of the equation.
7x^{2}+2x=8-9
Subtracting 9 from itself leaves 0.
7x^{2}+2x=-1
Subtract 9 from 8.
\frac{7x^{2}+2x}{7}=-\frac{1}{7}
Divide both sides by 7.
x^{2}+\frac{2}{7}x=-\frac{1}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=-\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
Divide \frac{2}{7}, the coefficient of the x term, by 2 to get \frac{1}{7}. Then add the square of \frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{1}{7}+\frac{1}{49}
Square \frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{6}{49}
Add -\frac{1}{7} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{7}\right)^{2}=-\frac{6}{49}
Factor x^{2}+\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{-\frac{6}{49}}
Take the square root of both sides of the equation.
x+\frac{1}{7}=\frac{\sqrt{6}i}{7} x+\frac{1}{7}=-\frac{\sqrt{6}i}{7}
Simplify.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
Subtract \frac{1}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}