Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+21x+56=14
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7x^{2}+21x+56-14=14-14
Subtract 14 from both sides of the equation.
7x^{2}+21x+56-14=0
Subtracting 14 from itself leaves 0.
7x^{2}+21x+42=0
Subtract 14 from 56.
x=\frac{-21±\sqrt{21^{2}-4\times 7\times 42}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 21 for b, and 42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 7\times 42}}{2\times 7}
Square 21.
x=\frac{-21±\sqrt{441-28\times 42}}{2\times 7}
Multiply -4 times 7.
x=\frac{-21±\sqrt{441-1176}}{2\times 7}
Multiply -28 times 42.
x=\frac{-21±\sqrt{-735}}{2\times 7}
Add 441 to -1176.
x=\frac{-21±7\sqrt{15}i}{2\times 7}
Take the square root of -735.
x=\frac{-21±7\sqrt{15}i}{14}
Multiply 2 times 7.
x=\frac{-21+7\sqrt{15}i}{14}
Now solve the equation x=\frac{-21±7\sqrt{15}i}{14} when ± is plus. Add -21 to 7i\sqrt{15}.
x=\frac{-3+\sqrt{15}i}{2}
Divide -21+7i\sqrt{15} by 14.
x=\frac{-7\sqrt{15}i-21}{14}
Now solve the equation x=\frac{-21±7\sqrt{15}i}{14} when ± is minus. Subtract 7i\sqrt{15} from -21.
x=\frac{-\sqrt{15}i-3}{2}
Divide -21-7i\sqrt{15} by 14.
x=\frac{-3+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-3}{2}
The equation is now solved.
7x^{2}+21x+56=14
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+21x+56-56=14-56
Subtract 56 from both sides of the equation.
7x^{2}+21x=14-56
Subtracting 56 from itself leaves 0.
7x^{2}+21x=-42
Subtract 56 from 14.
\frac{7x^{2}+21x}{7}=-\frac{42}{7}
Divide both sides by 7.
x^{2}+\frac{21}{7}x=-\frac{42}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+3x=-\frac{42}{7}
Divide 21 by 7.
x^{2}+3x=-6
Divide -42 by 7.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-6+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-6+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{15}{4}
Add -6 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{15}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{15}i}{2} x+\frac{3}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
x=\frac{-3+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.