Solve for x
x = \frac{\sqrt{141} + 15}{7} \approx 3.839191727
x=\frac{15-\sqrt{141}}{7}\approx 0.446522559
Graph
Share
Copied to clipboard
7x^{2}+2-30x=-10
Subtract 30x from both sides.
7x^{2}+2-30x+10=0
Add 10 to both sides.
7x^{2}+12-30x=0
Add 2 and 10 to get 12.
7x^{2}-30x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 7\times 12}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -30 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 7\times 12}}{2\times 7}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-28\times 12}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-30\right)±\sqrt{900-336}}{2\times 7}
Multiply -28 times 12.
x=\frac{-\left(-30\right)±\sqrt{564}}{2\times 7}
Add 900 to -336.
x=\frac{-\left(-30\right)±2\sqrt{141}}{2\times 7}
Take the square root of 564.
x=\frac{30±2\sqrt{141}}{2\times 7}
The opposite of -30 is 30.
x=\frac{30±2\sqrt{141}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{141}+30}{14}
Now solve the equation x=\frac{30±2\sqrt{141}}{14} when ± is plus. Add 30 to 2\sqrt{141}.
x=\frac{\sqrt{141}+15}{7}
Divide 30+2\sqrt{141} by 14.
x=\frac{30-2\sqrt{141}}{14}
Now solve the equation x=\frac{30±2\sqrt{141}}{14} when ± is minus. Subtract 2\sqrt{141} from 30.
x=\frac{15-\sqrt{141}}{7}
Divide 30-2\sqrt{141} by 14.
x=\frac{\sqrt{141}+15}{7} x=\frac{15-\sqrt{141}}{7}
The equation is now solved.
7x^{2}+2-30x=-10
Subtract 30x from both sides.
7x^{2}-30x=-10-2
Subtract 2 from both sides.
7x^{2}-30x=-12
Subtract 2 from -10 to get -12.
\frac{7x^{2}-30x}{7}=-\frac{12}{7}
Divide both sides by 7.
x^{2}-\frac{30}{7}x=-\frac{12}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{30}{7}x+\left(-\frac{15}{7}\right)^{2}=-\frac{12}{7}+\left(-\frac{15}{7}\right)^{2}
Divide -\frac{30}{7}, the coefficient of the x term, by 2 to get -\frac{15}{7}. Then add the square of -\frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{30}{7}x+\frac{225}{49}=-\frac{12}{7}+\frac{225}{49}
Square -\frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{30}{7}x+\frac{225}{49}=\frac{141}{49}
Add -\frac{12}{7} to \frac{225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{7}\right)^{2}=\frac{141}{49}
Factor x^{2}-\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{7}\right)^{2}}=\sqrt{\frac{141}{49}}
Take the square root of both sides of the equation.
x-\frac{15}{7}=\frac{\sqrt{141}}{7} x-\frac{15}{7}=-\frac{\sqrt{141}}{7}
Simplify.
x=\frac{\sqrt{141}+15}{7} x=\frac{15-\sqrt{141}}{7}
Add \frac{15}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}