Evaluate
\frac{395840}{2009}\approx 197.033349925
Factor
\frac{5 \cdot 1237 \cdot 2 ^ {6}}{41 \cdot 7 ^ {2}} = 197\frac{67}{2009} = 197.03334992533598
Share
Copied to clipboard
\frac{301}{12.3}\times 6+\frac{18}{14.7}\times 41
Multiply 7 and 43 to get 301.
\frac{3010}{123}\times 6+\frac{18}{14.7}\times 41
Expand \frac{301}{12.3} by multiplying both numerator and the denominator by 10.
\frac{3010\times 6}{123}+\frac{18}{14.7}\times 41
Express \frac{3010}{123}\times 6 as a single fraction.
\frac{18060}{123}+\frac{18}{14.7}\times 41
Multiply 3010 and 6 to get 18060.
\frac{6020}{41}+\frac{18}{14.7}\times 41
Reduce the fraction \frac{18060}{123} to lowest terms by extracting and canceling out 3.
\frac{6020}{41}+\frac{180}{147}\times 41
Expand \frac{18}{14.7} by multiplying both numerator and the denominator by 10.
\frac{6020}{41}+\frac{60}{49}\times 41
Reduce the fraction \frac{180}{147} to lowest terms by extracting and canceling out 3.
\frac{6020}{41}+\frac{60\times 41}{49}
Express \frac{60}{49}\times 41 as a single fraction.
\frac{6020}{41}+\frac{2460}{49}
Multiply 60 and 41 to get 2460.
\frac{294980}{2009}+\frac{100860}{2009}
Least common multiple of 41 and 49 is 2009. Convert \frac{6020}{41} and \frac{2460}{49} to fractions with denominator 2009.
\frac{294980+100860}{2009}
Since \frac{294980}{2009} and \frac{100860}{2009} have the same denominator, add them by adding their numerators.
\frac{395840}{2009}
Add 294980 and 100860 to get 395840.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}