Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

7\times 2^{3}-\frac{24^{3}}{8^{3}}-5^{2}+2^{3}-\frac{18}{3^{2}}-\frac{3^{5}}{3^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
7\times 2^{3}-\frac{24^{3}}{8^{3}}-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 5 to get 2.
7\times 8-\frac{24^{3}}{8^{3}}-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Calculate 2 to the power of 3 and get 8.
56-\frac{24^{3}}{8^{3}}-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Multiply 7 and 8 to get 56.
56-\frac{13824}{8^{3}}-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Calculate 24 to the power of 3 and get 13824.
56-\frac{13824}{512}-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Calculate 8 to the power of 3 and get 512.
56-27-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Divide 13824 by 512 to get 27.
29-5^{2}+2^{3}-\frac{18}{3^{2}}-3^{2}
Subtract 27 from 56 to get 29.
29-25+2^{3}-\frac{18}{3^{2}}-3^{2}
Calculate 5 to the power of 2 and get 25.
4+2^{3}-\frac{18}{3^{2}}-3^{2}
Subtract 25 from 29 to get 4.
4+8-\frac{18}{3^{2}}-3^{2}
Calculate 2 to the power of 3 and get 8.
12-\frac{18}{3^{2}}-3^{2}
Add 4 and 8 to get 12.
12-\frac{18}{9}-3^{2}
Calculate 3 to the power of 2 and get 9.
12-2-3^{2}
Divide 18 by 9 to get 2.
10-3^{2}
Subtract 2 from 12 to get 10.
10-9
Calculate 3 to the power of 2 and get 9.
1
Subtract 9 from 10 to get 1.