Solve for x
x=\frac{\sqrt{1969}-3}{70}\approx 0.591048792
x=\frac{-\sqrt{1969}-3}{70}\approx -0.676763078
Graph
Share
Copied to clipboard
35x^{2}+3x=14
Multiply 7 and 5 to get 35.
35x^{2}+3x-14=0
Subtract 14 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 35\left(-14\right)}}{2\times 35}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 35 for a, 3 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 35\left(-14\right)}}{2\times 35}
Square 3.
x=\frac{-3±\sqrt{9-140\left(-14\right)}}{2\times 35}
Multiply -4 times 35.
x=\frac{-3±\sqrt{9+1960}}{2\times 35}
Multiply -140 times -14.
x=\frac{-3±\sqrt{1969}}{2\times 35}
Add 9 to 1960.
x=\frac{-3±\sqrt{1969}}{70}
Multiply 2 times 35.
x=\frac{\sqrt{1969}-3}{70}
Now solve the equation x=\frac{-3±\sqrt{1969}}{70} when ± is plus. Add -3 to \sqrt{1969}.
x=\frac{-\sqrt{1969}-3}{70}
Now solve the equation x=\frac{-3±\sqrt{1969}}{70} when ± is minus. Subtract \sqrt{1969} from -3.
x=\frac{\sqrt{1969}-3}{70} x=\frac{-\sqrt{1969}-3}{70}
The equation is now solved.
35x^{2}+3x=14
Multiply 7 and 5 to get 35.
\frac{35x^{2}+3x}{35}=\frac{14}{35}
Divide both sides by 35.
x^{2}+\frac{3}{35}x=\frac{14}{35}
Dividing by 35 undoes the multiplication by 35.
x^{2}+\frac{3}{35}x=\frac{2}{5}
Reduce the fraction \frac{14}{35} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{3}{35}x+\left(\frac{3}{70}\right)^{2}=\frac{2}{5}+\left(\frac{3}{70}\right)^{2}
Divide \frac{3}{35}, the coefficient of the x term, by 2 to get \frac{3}{70}. Then add the square of \frac{3}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{35}x+\frac{9}{4900}=\frac{2}{5}+\frac{9}{4900}
Square \frac{3}{70} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{35}x+\frac{9}{4900}=\frac{1969}{4900}
Add \frac{2}{5} to \frac{9}{4900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{70}\right)^{2}=\frac{1969}{4900}
Factor x^{2}+\frac{3}{35}x+\frac{9}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{70}\right)^{2}}=\sqrt{\frac{1969}{4900}}
Take the square root of both sides of the equation.
x+\frac{3}{70}=\frac{\sqrt{1969}}{70} x+\frac{3}{70}=-\frac{\sqrt{1969}}{70}
Simplify.
x=\frac{\sqrt{1969}-3}{70} x=\frac{-\sqrt{1969}-3}{70}
Subtract \frac{3}{70} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}