Evaluate
-\frac{32}{29}+\frac{114}{29}i\approx -1.103448276+3.931034483i
Real Part
-\frac{32}{29} = -1\frac{3}{29} = -1.103448275862069
Share
Copied to clipboard
7\times \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}+\frac{3-2i}{2+5i}
Multiply both numerator and denominator of \frac{3+2i}{2-5i} by the complex conjugate of the denominator, 2+5i.
7\times \frac{-4+19i}{29}+\frac{3-2i}{2+5i}
Do the multiplications in \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}.
7\left(-\frac{4}{29}+\frac{19}{29}i\right)+\frac{3-2i}{2+5i}
Divide -4+19i by 29 to get -\frac{4}{29}+\frac{19}{29}i.
-\frac{28}{29}+\frac{133}{29}i+\frac{3-2i}{2+5i}
Multiply 7 and -\frac{4}{29}+\frac{19}{29}i to get -\frac{28}{29}+\frac{133}{29}i.
-\frac{28}{29}+\frac{133}{29}i+\frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}
Multiply both numerator and denominator of \frac{3-2i}{2+5i} by the complex conjugate of the denominator, 2-5i.
-\frac{28}{29}+\frac{133}{29}i+\frac{-4-19i}{29}
Do the multiplications in \frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}.
-\frac{28}{29}+\frac{133}{29}i+\left(-\frac{4}{29}-\frac{19}{29}i\right)
Divide -4-19i by 29 to get -\frac{4}{29}-\frac{19}{29}i.
-\frac{32}{29}+\frac{114}{29}i
Add -\frac{28}{29}+\frac{133}{29}i and -\frac{4}{29}-\frac{19}{29}i to get -\frac{32}{29}+\frac{114}{29}i.
Re(7\times \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}+\frac{3-2i}{2+5i})
Multiply both numerator and denominator of \frac{3+2i}{2-5i} by the complex conjugate of the denominator, 2+5i.
Re(7\times \frac{-4+19i}{29}+\frac{3-2i}{2+5i})
Do the multiplications in \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}.
Re(7\left(-\frac{4}{29}+\frac{19}{29}i\right)+\frac{3-2i}{2+5i})
Divide -4+19i by 29 to get -\frac{4}{29}+\frac{19}{29}i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{3-2i}{2+5i})
Multiply 7 and -\frac{4}{29}+\frac{19}{29}i to get -\frac{28}{29}+\frac{133}{29}i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)})
Multiply both numerator and denominator of \frac{3-2i}{2+5i} by the complex conjugate of the denominator, 2-5i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{-4-19i}{29})
Do the multiplications in \frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}.
Re(-\frac{28}{29}+\frac{133}{29}i+\left(-\frac{4}{29}-\frac{19}{29}i\right))
Divide -4-19i by 29 to get -\frac{4}{29}-\frac{19}{29}i.
Re(-\frac{32}{29}+\frac{114}{29}i)
Add -\frac{28}{29}+\frac{133}{29}i and -\frac{4}{29}-\frac{19}{29}i to get -\frac{32}{29}+\frac{114}{29}i.
-\frac{32}{29}
The real part of -\frac{32}{29}+\frac{114}{29}i is -\frac{32}{29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}