Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

7\times \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}+\frac{3-2i}{2+5i}
Multiply both numerator and denominator of \frac{3+2i}{2-5i} by the complex conjugate of the denominator, 2+5i.
7\times \frac{-4+19i}{29}+\frac{3-2i}{2+5i}
Do the multiplications in \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}.
7\left(-\frac{4}{29}+\frac{19}{29}i\right)+\frac{3-2i}{2+5i}
Divide -4+19i by 29 to get -\frac{4}{29}+\frac{19}{29}i.
-\frac{28}{29}+\frac{133}{29}i+\frac{3-2i}{2+5i}
Multiply 7 and -\frac{4}{29}+\frac{19}{29}i to get -\frac{28}{29}+\frac{133}{29}i.
-\frac{28}{29}+\frac{133}{29}i+\frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}
Multiply both numerator and denominator of \frac{3-2i}{2+5i} by the complex conjugate of the denominator, 2-5i.
-\frac{28}{29}+\frac{133}{29}i+\frac{-4-19i}{29}
Do the multiplications in \frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}.
-\frac{28}{29}+\frac{133}{29}i+\left(-\frac{4}{29}-\frac{19}{29}i\right)
Divide -4-19i by 29 to get -\frac{4}{29}-\frac{19}{29}i.
-\frac{32}{29}+\frac{114}{29}i
Add -\frac{28}{29}+\frac{133}{29}i and -\frac{4}{29}-\frac{19}{29}i to get -\frac{32}{29}+\frac{114}{29}i.
Re(7\times \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}+\frac{3-2i}{2+5i})
Multiply both numerator and denominator of \frac{3+2i}{2-5i} by the complex conjugate of the denominator, 2+5i.
Re(7\times \frac{-4+19i}{29}+\frac{3-2i}{2+5i})
Do the multiplications in \frac{\left(3+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}.
Re(7\left(-\frac{4}{29}+\frac{19}{29}i\right)+\frac{3-2i}{2+5i})
Divide -4+19i by 29 to get -\frac{4}{29}+\frac{19}{29}i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{3-2i}{2+5i})
Multiply 7 and -\frac{4}{29}+\frac{19}{29}i to get -\frac{28}{29}+\frac{133}{29}i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)})
Multiply both numerator and denominator of \frac{3-2i}{2+5i} by the complex conjugate of the denominator, 2-5i.
Re(-\frac{28}{29}+\frac{133}{29}i+\frac{-4-19i}{29})
Do the multiplications in \frac{\left(3-2i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}.
Re(-\frac{28}{29}+\frac{133}{29}i+\left(-\frac{4}{29}-\frac{19}{29}i\right))
Divide -4-19i by 29 to get -\frac{4}{29}-\frac{19}{29}i.
Re(-\frac{32}{29}+\frac{114}{29}i)
Add -\frac{28}{29}+\frac{133}{29}i and -\frac{4}{29}-\frac{19}{29}i to get -\frac{32}{29}+\frac{114}{29}i.
-\frac{32}{29}
The real part of -\frac{32}{29}+\frac{114}{29}i is -\frac{32}{29}.