Evaluate
\frac{191}{21}-4x
Expand
\frac{191}{21}-4x
Graph
Share
Copied to clipboard
\frac{21+2}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Multiply 7 and 3 to get 21.
\frac{23}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Add 21 and 2 to get 23.
\frac{23}{3}+\frac{6-\frac{14+4}{7}}{\frac{2\times 5+2}{5}}-4x
Multiply 2 and 7 to get 14.
\frac{23}{3}+\frac{6-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Add 14 and 4 to get 18.
\frac{23}{3}+\frac{\frac{42}{7}-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Convert 6 to fraction \frac{42}{7}.
\frac{23}{3}+\frac{\frac{42-18}{7}}{\frac{2\times 5+2}{5}}-4x
Since \frac{42}{7} and \frac{18}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{2\times 5+2}{5}}-4x
Subtract 18 from 42 to get 24.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{10+2}{5}}-4x
Multiply 2 and 5 to get 10.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{12}{5}}-4x
Add 10 and 2 to get 12.
\frac{23}{3}+\frac{24}{7}\times \frac{5}{12}-4x
Divide \frac{24}{7} by \frac{12}{5} by multiplying \frac{24}{7} by the reciprocal of \frac{12}{5}.
\frac{23}{3}+\frac{24\times 5}{7\times 12}-4x
Multiply \frac{24}{7} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{23}{3}+\frac{120}{84}-4x
Do the multiplications in the fraction \frac{24\times 5}{7\times 12}.
\frac{23}{3}+\frac{10}{7}-4x
Reduce the fraction \frac{120}{84} to lowest terms by extracting and canceling out 12.
\frac{161}{21}+\frac{30}{21}-4x
Least common multiple of 3 and 7 is 21. Convert \frac{23}{3} and \frac{10}{7} to fractions with denominator 21.
\frac{161+30}{21}-4x
Since \frac{161}{21} and \frac{30}{21} have the same denominator, add them by adding their numerators.
\frac{191}{21}-4x
Add 161 and 30 to get 191.
\frac{21+2}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Multiply 7 and 3 to get 21.
\frac{23}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Add 21 and 2 to get 23.
\frac{23}{3}+\frac{6-\frac{14+4}{7}}{\frac{2\times 5+2}{5}}-4x
Multiply 2 and 7 to get 14.
\frac{23}{3}+\frac{6-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Add 14 and 4 to get 18.
\frac{23}{3}+\frac{\frac{42}{7}-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Convert 6 to fraction \frac{42}{7}.
\frac{23}{3}+\frac{\frac{42-18}{7}}{\frac{2\times 5+2}{5}}-4x
Since \frac{42}{7} and \frac{18}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{2\times 5+2}{5}}-4x
Subtract 18 from 42 to get 24.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{10+2}{5}}-4x
Multiply 2 and 5 to get 10.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{12}{5}}-4x
Add 10 and 2 to get 12.
\frac{23}{3}+\frac{24}{7}\times \frac{5}{12}-4x
Divide \frac{24}{7} by \frac{12}{5} by multiplying \frac{24}{7} by the reciprocal of \frac{12}{5}.
\frac{23}{3}+\frac{24\times 5}{7\times 12}-4x
Multiply \frac{24}{7} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{23}{3}+\frac{120}{84}-4x
Do the multiplications in the fraction \frac{24\times 5}{7\times 12}.
\frac{23}{3}+\frac{10}{7}-4x
Reduce the fraction \frac{120}{84} to lowest terms by extracting and canceling out 12.
\frac{161}{21}+\frac{30}{21}-4x
Least common multiple of 3 and 7 is 21. Convert \frac{23}{3} and \frac{10}{7} to fractions with denominator 21.
\frac{161+30}{21}-4x
Since \frac{161}{21} and \frac{30}{21} have the same denominator, add them by adding their numerators.
\frac{191}{21}-4x
Add 161 and 30 to get 191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}