Solve for x
x=\frac{5-21y}{8}
Solve for y
y=\frac{5-8x}{21}
Graph
Share
Copied to clipboard
7y-7=-\frac{8}{3}x-\frac{16}{3}
Use the distributive property to multiply -\frac{8}{3} by x+2.
-\frac{8}{3}x-\frac{16}{3}=7y-7
Swap sides so that all variable terms are on the left hand side.
-\frac{8}{3}x=7y-7+\frac{16}{3}
Add \frac{16}{3} to both sides.
-\frac{8}{3}x=7y-\frac{5}{3}
Add -7 and \frac{16}{3} to get -\frac{5}{3}.
\frac{-\frac{8}{3}x}{-\frac{8}{3}}=\frac{7y-\frac{5}{3}}{-\frac{8}{3}}
Divide both sides of the equation by -\frac{8}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{7y-\frac{5}{3}}{-\frac{8}{3}}
Dividing by -\frac{8}{3} undoes the multiplication by -\frac{8}{3}.
x=\frac{5-21y}{8}
Divide 7y-\frac{5}{3} by -\frac{8}{3} by multiplying 7y-\frac{5}{3} by the reciprocal of -\frac{8}{3}.
7y-7=-\frac{8}{3}x-\frac{16}{3}
Use the distributive property to multiply -\frac{8}{3} by x+2.
7y=-\frac{8}{3}x-\frac{16}{3}+7
Add 7 to both sides.
7y=-\frac{8}{3}x+\frac{5}{3}
Add -\frac{16}{3} and 7 to get \frac{5}{3}.
7y=\frac{5-8x}{3}
The equation is in standard form.
\frac{7y}{7}=\frac{5-8x}{3\times 7}
Divide both sides by 7.
y=\frac{5-8x}{3\times 7}
Dividing by 7 undoes the multiplication by 7.
y=\frac{5-8x}{21}
Divide \frac{-8x+5}{3} by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}