Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2}x^{2}-x+343=\frac{1}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{3}{2}x^{2}-x+343-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
\frac{3}{2}x^{2}-x+343-\frac{1}{2}=0
Subtracting \frac{1}{2} from itself leaves 0.
\frac{3}{2}x^{2}-x+\frac{685}{2}=0
Subtract \frac{1}{2} from 343.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{2}\times \frac{685}{2}}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -1 for b, and \frac{685}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-6\times \frac{685}{2}}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{-\left(-1\right)±\sqrt{1-2055}}{2\times \frac{3}{2}}
Multiply -6 times \frac{685}{2}.
x=\frac{-\left(-1\right)±\sqrt{-2054}}{2\times \frac{3}{2}}
Add 1 to -2055.
x=\frac{-\left(-1\right)±\sqrt{2054}i}{2\times \frac{3}{2}}
Take the square root of -2054.
x=\frac{1±\sqrt{2054}i}{2\times \frac{3}{2}}
The opposite of -1 is 1.
x=\frac{1±\sqrt{2054}i}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{1+\sqrt{2054}i}{3}
Now solve the equation x=\frac{1±\sqrt{2054}i}{3} when ± is plus. Add 1 to i\sqrt{2054}.
x=\frac{-\sqrt{2054}i+1}{3}
Now solve the equation x=\frac{1±\sqrt{2054}i}{3} when ± is minus. Subtract i\sqrt{2054} from 1.
x=\frac{1+\sqrt{2054}i}{3} x=\frac{-\sqrt{2054}i+1}{3}
The equation is now solved.
\frac{3}{2}x^{2}-x+343=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3}{2}x^{2}-x+343-343=\frac{1}{2}-343
Subtract 343 from both sides of the equation.
\frac{3}{2}x^{2}-x=\frac{1}{2}-343
Subtracting 343 from itself leaves 0.
\frac{3}{2}x^{2}-x=-\frac{685}{2}
Subtract 343 from \frac{1}{2}.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=-\frac{\frac{685}{2}}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=-\frac{\frac{685}{2}}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-\frac{2}{3}x=-\frac{\frac{685}{2}}{\frac{3}{2}}
Divide -1 by \frac{3}{2} by multiplying -1 by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x=-\frac{685}{3}
Divide -\frac{685}{2} by \frac{3}{2} by multiplying -\frac{685}{2} by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{685}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{685}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2054}{9}
Add -\frac{685}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2054}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2054}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{2054}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2054}i}{3}
Simplify.
x=\frac{1+\sqrt{2054}i}{3} x=\frac{-\sqrt{2054}i+1}{3}
Add \frac{1}{3} to both sides of the equation.