Solve for x
x=\frac{\sqrt{445}}{30}+\frac{1}{6}\approx 0.869834104
x=-\frac{\sqrt{445}}{30}+\frac{1}{6}\approx -0.53650077
Graph
Share
Copied to clipboard
15x^{2}-5x=7
Swap sides so that all variable terms are on the left hand side.
15x^{2}-5x-7=0
Subtract 7 from both sides.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 15\left(-7\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -5 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 15\left(-7\right)}}{2\times 15}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-60\left(-7\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-5\right)±\sqrt{25+420}}{2\times 15}
Multiply -60 times -7.
x=\frac{-\left(-5\right)±\sqrt{445}}{2\times 15}
Add 25 to 420.
x=\frac{5±\sqrt{445}}{2\times 15}
The opposite of -5 is 5.
x=\frac{5±\sqrt{445}}{30}
Multiply 2 times 15.
x=\frac{\sqrt{445}+5}{30}
Now solve the equation x=\frac{5±\sqrt{445}}{30} when ± is plus. Add 5 to \sqrt{445}.
x=\frac{\sqrt{445}}{30}+\frac{1}{6}
Divide 5+\sqrt{445} by 30.
x=\frac{5-\sqrt{445}}{30}
Now solve the equation x=\frac{5±\sqrt{445}}{30} when ± is minus. Subtract \sqrt{445} from 5.
x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Divide 5-\sqrt{445} by 30.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
The equation is now solved.
15x^{2}-5x=7
Swap sides so that all variable terms are on the left hand side.
\frac{15x^{2}-5x}{15}=\frac{7}{15}
Divide both sides by 15.
x^{2}+\left(-\frac{5}{15}\right)x=\frac{7}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{1}{3}x=\frac{7}{15}
Reduce the fraction \frac{-5}{15} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{7}{15}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{7}{15}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{89}{180}
Add \frac{7}{15} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{89}{180}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{89}{180}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{445}}{30} x-\frac{1}{6}=-\frac{\sqrt{445}}{30}
Simplify.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}