Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
x\times 7=\left(-2x+5\right)\times 4
Variable x cannot be equal to any of the values 0,\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-5\right), the least common multiple of 2x-5,0-x.
x\times 7=-8x+20
Use the distributive property to multiply -2x+5 by 4.
x\times 7+8x=20
Add 8x to both sides.
15x=20
Combine x\times 7 and 8x to get 15x.
x=\frac{20}{15}
Divide both sides by 15.
x=\frac{4}{3}
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}