Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(1+7a^{2}-2a\right)
Factor out 7. Polynomial 1+7a^{2}-2a is not factored since it does not have any rational roots.
49a^{2}-14a+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49\times 7}}{2\times 49}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-14\right)±\sqrt{196-4\times 49\times 7}}{2\times 49}
Square -14.
a=\frac{-\left(-14\right)±\sqrt{196-196\times 7}}{2\times 49}
Multiply -4 times 49.
a=\frac{-\left(-14\right)±\sqrt{196-1372}}{2\times 49}
Multiply -196 times 7.
a=\frac{-\left(-14\right)±\sqrt{-1176}}{2\times 49}
Add 196 to -1372.
49a^{2}-14a+7
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.