Evaluate
\frac{695}{76}\approx 9.144736842
Factor
\frac{5 \cdot 139}{2 ^ {2} \cdot 19} = 9\frac{11}{76} = 9.144736842105264
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)695}\\\end{array}
Use the 1^{st} digit 6 from dividend 695
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)695}\\\end{array}
Since 6 is less than 76, use the next digit 9 from dividend 695 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)695}\\\end{array}
Use the 2^{nd} digit 9 from dividend 695
\begin{array}{l}\phantom{76)}00\phantom{4}\\76\overline{)695}\\\end{array}
Since 69 is less than 76, use the next digit 5 from dividend 695 and add 0 to the quotient
\begin{array}{l}\phantom{76)}00\phantom{5}\\76\overline{)695}\\\end{array}
Use the 3^{rd} digit 5 from dividend 695
\begin{array}{l}\phantom{76)}009\phantom{6}\\76\overline{)695}\\\phantom{76)}\underline{\phantom{}684\phantom{}}\\\phantom{76)9}11\\\end{array}
Find closest multiple of 76 to 695. We see that 9 \times 76 = 684 is the nearest. Now subtract 684 from 695 to get reminder 11. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }11
Since 11 is less than 76, stop the division. The reminder is 11. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}