Evaluate
\frac{53}{9}\approx 5.888888889
Factor
\frac{53}{3 ^ {2}} = 5\frac{8}{9} = 5.888888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{117)}\phantom{1}\\117\overline{)689}\\\end{array}
Use the 1^{st} digit 6 from dividend 689
\begin{array}{l}\phantom{117)}0\phantom{2}\\117\overline{)689}\\\end{array}
Since 6 is less than 117, use the next digit 8 from dividend 689 and add 0 to the quotient
\begin{array}{l}\phantom{117)}0\phantom{3}\\117\overline{)689}\\\end{array}
Use the 2^{nd} digit 8 from dividend 689
\begin{array}{l}\phantom{117)}00\phantom{4}\\117\overline{)689}\\\end{array}
Since 68 is less than 117, use the next digit 9 from dividend 689 and add 0 to the quotient
\begin{array}{l}\phantom{117)}00\phantom{5}\\117\overline{)689}\\\end{array}
Use the 3^{rd} digit 9 from dividend 689
\begin{array}{l}\phantom{117)}005\phantom{6}\\117\overline{)689}\\\phantom{117)}\underline{\phantom{}585\phantom{}}\\\phantom{117)}104\\\end{array}
Find closest multiple of 117 to 689. We see that 5 \times 117 = 585 is the nearest. Now subtract 585 from 689 to get reminder 104. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }104
Since 104 is less than 117, stop the division. The reminder is 104. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}