Evaluate
\frac{687}{514}\approx 1.336575875
Factor
\frac{3 \cdot 229}{2 \cdot 257} = 1\frac{173}{514} = 1.3365758754863812
Share
Copied to clipboard
\begin{array}{l}\phantom{5140)}\phantom{1}\\5140\overline{)6870}\\\end{array}
Use the 1^{st} digit 6 from dividend 6870
\begin{array}{l}\phantom{5140)}0\phantom{2}\\5140\overline{)6870}\\\end{array}
Since 6 is less than 5140, use the next digit 8 from dividend 6870 and add 0 to the quotient
\begin{array}{l}\phantom{5140)}0\phantom{3}\\5140\overline{)6870}\\\end{array}
Use the 2^{nd} digit 8 from dividend 6870
\begin{array}{l}\phantom{5140)}00\phantom{4}\\5140\overline{)6870}\\\end{array}
Since 68 is less than 5140, use the next digit 7 from dividend 6870 and add 0 to the quotient
\begin{array}{l}\phantom{5140)}00\phantom{5}\\5140\overline{)6870}\\\end{array}
Use the 3^{rd} digit 7 from dividend 6870
\begin{array}{l}\phantom{5140)}000\phantom{6}\\5140\overline{)6870}\\\end{array}
Since 687 is less than 5140, use the next digit 0 from dividend 6870 and add 0 to the quotient
\begin{array}{l}\phantom{5140)}000\phantom{7}\\5140\overline{)6870}\\\end{array}
Use the 4^{th} digit 0 from dividend 6870
\begin{array}{l}\phantom{5140)}0001\phantom{8}\\5140\overline{)6870}\\\phantom{5140)}\underline{\phantom{}5140\phantom{}}\\\phantom{5140)}1730\\\end{array}
Find closest multiple of 5140 to 6870. We see that 1 \times 5140 = 5140 is the nearest. Now subtract 5140 from 6870 to get reminder 1730. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1730
Since 1730 is less than 5140, stop the division. The reminder is 1730. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}