Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{120-33\sqrt{15}}{68}
Dividing by 68 undoes the multiplication by 68.
x^{2}=-\frac{33\sqrt{15}}{68}+\frac{30}{17}
Divide 120-33\sqrt{15} by 68.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Take the square root of both sides of the equation.
68x^{2}-120=-33\sqrt{15}
Subtract 120 from both sides.
68x^{2}-120+33\sqrt{15}=0
Add 33\sqrt{15} to both sides.
68x^{2}+33\sqrt{15}-120=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 68 for a, 0 for b, and -120+33\sqrt{15} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
Square 0.
x=\frac{0±\sqrt{-272\left(33\sqrt{15}-120\right)}}{2\times 68}
Multiply -4 times 68.
x=\frac{0±\sqrt{32640-8976\sqrt{15}}}{2\times 68}
Multiply -272 times -120+33\sqrt{15}.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{2\times 68}
Take the square root of 32640-8976\sqrt{15}.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136}
Multiply 2 times 68.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Now solve the equation x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} when ± is plus.
x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Now solve the equation x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} when ± is minus.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
The equation is now solved.