Evaluate
\frac{34}{21}\approx 1.619047619
Factor
\frac{2 \cdot 17}{3 \cdot 7} = 1\frac{13}{21} = 1.619047619047619
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)68}\\\end{array}
Use the 1^{st} digit 6 from dividend 68
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)68}\\\end{array}
Since 6 is less than 42, use the next digit 8 from dividend 68 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)68}\\\end{array}
Use the 2^{nd} digit 8 from dividend 68
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)68}\\\phantom{42)}\underline{\phantom{}42\phantom{}}\\\phantom{42)}26\\\end{array}
Find closest multiple of 42 to 68. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 68 to get reminder 26. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }26
Since 26 is less than 42, stop the division. The reminder is 26. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}