Solve for x
x = \frac{25 \sqrt{93889} + 5625}{1352} \approx 9.826426032
x=\frac{5625-25\sqrt{93889}}{1352}\approx -1.505420115
Graph
Share
Copied to clipboard
676x^{2}-5625x-10000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5625\right)±\sqrt{\left(-5625\right)^{2}-4\times 676\left(-10000\right)}}{2\times 676}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 676 for a, -5625 for b, and -10000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5625\right)±\sqrt{31640625-4\times 676\left(-10000\right)}}{2\times 676}
Square -5625.
x=\frac{-\left(-5625\right)±\sqrt{31640625-2704\left(-10000\right)}}{2\times 676}
Multiply -4 times 676.
x=\frac{-\left(-5625\right)±\sqrt{31640625+27040000}}{2\times 676}
Multiply -2704 times -10000.
x=\frac{-\left(-5625\right)±\sqrt{58680625}}{2\times 676}
Add 31640625 to 27040000.
x=\frac{-\left(-5625\right)±25\sqrt{93889}}{2\times 676}
Take the square root of 58680625.
x=\frac{5625±25\sqrt{93889}}{2\times 676}
The opposite of -5625 is 5625.
x=\frac{5625±25\sqrt{93889}}{1352}
Multiply 2 times 676.
x=\frac{25\sqrt{93889}+5625}{1352}
Now solve the equation x=\frac{5625±25\sqrt{93889}}{1352} when ± is plus. Add 5625 to 25\sqrt{93889}.
x=\frac{5625-25\sqrt{93889}}{1352}
Now solve the equation x=\frac{5625±25\sqrt{93889}}{1352} when ± is minus. Subtract 25\sqrt{93889} from 5625.
x=\frac{25\sqrt{93889}+5625}{1352} x=\frac{5625-25\sqrt{93889}}{1352}
The equation is now solved.
676x^{2}-5625x-10000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
676x^{2}-5625x-10000-\left(-10000\right)=-\left(-10000\right)
Add 10000 to both sides of the equation.
676x^{2}-5625x=-\left(-10000\right)
Subtracting -10000 from itself leaves 0.
676x^{2}-5625x=10000
Subtract -10000 from 0.
\frac{676x^{2}-5625x}{676}=\frac{10000}{676}
Divide both sides by 676.
x^{2}-\frac{5625}{676}x=\frac{10000}{676}
Dividing by 676 undoes the multiplication by 676.
x^{2}-\frac{5625}{676}x=\frac{2500}{169}
Reduce the fraction \frac{10000}{676} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{5625}{676}x+\left(-\frac{5625}{1352}\right)^{2}=\frac{2500}{169}+\left(-\frac{5625}{1352}\right)^{2}
Divide -\frac{5625}{676}, the coefficient of the x term, by 2 to get -\frac{5625}{1352}. Then add the square of -\frac{5625}{1352} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5625}{676}x+\frac{31640625}{1827904}=\frac{2500}{169}+\frac{31640625}{1827904}
Square -\frac{5625}{1352} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5625}{676}x+\frac{31640625}{1827904}=\frac{58680625}{1827904}
Add \frac{2500}{169} to \frac{31640625}{1827904} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5625}{1352}\right)^{2}=\frac{58680625}{1827904}
Factor x^{2}-\frac{5625}{676}x+\frac{31640625}{1827904}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5625}{1352}\right)^{2}}=\sqrt{\frac{58680625}{1827904}}
Take the square root of both sides of the equation.
x-\frac{5625}{1352}=\frac{25\sqrt{93889}}{1352} x-\frac{5625}{1352}=-\frac{25\sqrt{93889}}{1352}
Simplify.
x=\frac{25\sqrt{93889}+5625}{1352} x=\frac{5625-25\sqrt{93889}}{1352}
Add \frac{5625}{1352} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}