Evaluate
26
Factor
2\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)676}\\\end{array}
Use the 1^{st} digit 6 from dividend 676
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)676}\\\end{array}
Since 6 is less than 26, use the next digit 7 from dividend 676 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)676}\\\end{array}
Use the 2^{nd} digit 7 from dividend 676
\begin{array}{l}\phantom{26)}02\phantom{4}\\26\overline{)676}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)}15\\\end{array}
Find closest multiple of 26 to 67. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 67 to get reminder 15. Add 2 to quotient.
\begin{array}{l}\phantom{26)}02\phantom{5}\\26\overline{)676}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)}156\\\end{array}
Use the 3^{rd} digit 6 from dividend 676
\begin{array}{l}\phantom{26)}026\phantom{6}\\26\overline{)676}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)}156\\\phantom{26)}\underline{\phantom{}156\phantom{}}\\\phantom{26)999}0\\\end{array}
Find closest multiple of 26 to 156. We see that 6 \times 26 = 156 is the nearest. Now subtract 156 from 156 to get reminder 0. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }0
Since 0 is less than 26, stop the division. The reminder is 0. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}