Evaluate
32
Factor
2^{5}
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)672}\\\end{array}
Use the 1^{st} digit 6 from dividend 672
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)672}\\\end{array}
Since 6 is less than 21, use the next digit 7 from dividend 672 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)672}\\\end{array}
Use the 2^{nd} digit 7 from dividend 672
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)672}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)9}4\\\end{array}
Find closest multiple of 21 to 67. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 67 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{21)}03\phantom{5}\\21\overline{)672}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)9}42\\\end{array}
Use the 3^{rd} digit 2 from dividend 672
\begin{array}{l}\phantom{21)}032\phantom{6}\\21\overline{)672}\\\phantom{21)}\underline{\phantom{}63\phantom{9}}\\\phantom{21)9}42\\\phantom{21)}\underline{\phantom{9}42\phantom{}}\\\phantom{21)999}0\\\end{array}
Find closest multiple of 21 to 42. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 42 to get reminder 0. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }0
Since 0 is less than 21, stop the division. The reminder is 0. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}