Evaluate
29
Factor
29
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)667}\\\end{array}
Use the 1^{st} digit 6 from dividend 667
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)667}\\\end{array}
Since 6 is less than 23, use the next digit 6 from dividend 667 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)667}\\\end{array}
Use the 2^{nd} digit 6 from dividend 667
\begin{array}{l}\phantom{23)}02\phantom{4}\\23\overline{)667}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}20\\\end{array}
Find closest multiple of 23 to 66. We see that 2 \times 23 = 46 is the nearest. Now subtract 46 from 66 to get reminder 20. Add 2 to quotient.
\begin{array}{l}\phantom{23)}02\phantom{5}\\23\overline{)667}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}207\\\end{array}
Use the 3^{rd} digit 7 from dividend 667
\begin{array}{l}\phantom{23)}029\phantom{6}\\23\overline{)667}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}207\\\phantom{23)}\underline{\phantom{}207\phantom{}}\\\phantom{23)999}0\\\end{array}
Find closest multiple of 23 to 207. We see that 9 \times 23 = 207 is the nearest. Now subtract 207 from 207 to get reminder 0. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}