Solve for h
h=2
Share
Copied to clipboard
66=\frac{22}{7}\times 9+2\times \frac{22}{7}\times 3h
Calculate 3 to the power of 2 and get 9.
66=\frac{22\times 9}{7}+2\times \frac{22}{7}\times 3h
Express \frac{22}{7}\times 9 as a single fraction.
66=\frac{198}{7}+2\times \frac{22}{7}\times 3h
Multiply 22 and 9 to get 198.
66=\frac{198}{7}+\frac{2\times 22}{7}\times 3h
Express 2\times \frac{22}{7} as a single fraction.
66=\frac{198}{7}+\frac{44}{7}\times 3h
Multiply 2 and 22 to get 44.
66=\frac{198}{7}+\frac{44\times 3}{7}h
Express \frac{44}{7}\times 3 as a single fraction.
66=\frac{198}{7}+\frac{132}{7}h
Multiply 44 and 3 to get 132.
\frac{198}{7}+\frac{132}{7}h=66
Swap sides so that all variable terms are on the left hand side.
\frac{132}{7}h=66-\frac{198}{7}
Subtract \frac{198}{7} from both sides.
\frac{132}{7}h=\frac{462}{7}-\frac{198}{7}
Convert 66 to fraction \frac{462}{7}.
\frac{132}{7}h=\frac{462-198}{7}
Since \frac{462}{7} and \frac{198}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{132}{7}h=\frac{264}{7}
Subtract 198 from 462 to get 264.
h=\frac{264}{7}\times \frac{7}{132}
Multiply both sides by \frac{7}{132}, the reciprocal of \frac{132}{7}.
h=\frac{264\times 7}{7\times 132}
Multiply \frac{264}{7} times \frac{7}{132} by multiplying numerator times numerator and denominator times denominator.
h=\frac{264}{132}
Cancel out 7 in both numerator and denominator.
h=2
Divide 264 by 132 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}