Evaluate
\frac{219}{50}=4.38
Factor
\frac{3 \cdot 73}{2 \cdot 5 ^ {2}} = 4\frac{19}{50} = 4.38
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)657}\\\end{array}
Use the 1^{st} digit 6 from dividend 657
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)657}\\\end{array}
Since 6 is less than 150, use the next digit 5 from dividend 657 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)657}\\\end{array}
Use the 2^{nd} digit 5 from dividend 657
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)657}\\\end{array}
Since 65 is less than 150, use the next digit 7 from dividend 657 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)657}\\\end{array}
Use the 3^{rd} digit 7 from dividend 657
\begin{array}{l}\phantom{150)}004\phantom{6}\\150\overline{)657}\\\phantom{150)}\underline{\phantom{}600\phantom{}}\\\phantom{150)9}57\\\end{array}
Find closest multiple of 150 to 657. We see that 4 \times 150 = 600 is the nearest. Now subtract 600 from 657 to get reminder 57. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }57
Since 57 is less than 150, stop the division. The reminder is 57. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}