Evaluate
\frac{656}{23}\approx 28.52173913
Factor
\frac{2 ^ {4} \cdot 41}{23} = 28\frac{12}{23} = 28.52173913043478
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)656}\\\end{array}
Use the 1^{st} digit 6 from dividend 656
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)656}\\\end{array}
Since 6 is less than 23, use the next digit 5 from dividend 656 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)656}\\\end{array}
Use the 2^{nd} digit 5 from dividend 656
\begin{array}{l}\phantom{23)}02\phantom{4}\\23\overline{)656}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}19\\\end{array}
Find closest multiple of 23 to 65. We see that 2 \times 23 = 46 is the nearest. Now subtract 46 from 65 to get reminder 19. Add 2 to quotient.
\begin{array}{l}\phantom{23)}02\phantom{5}\\23\overline{)656}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}196\\\end{array}
Use the 3^{rd} digit 6 from dividend 656
\begin{array}{l}\phantom{23)}028\phantom{6}\\23\overline{)656}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}196\\\phantom{23)}\underline{\phantom{}184\phantom{}}\\\phantom{23)9}12\\\end{array}
Find closest multiple of 23 to 196. We see that 8 \times 23 = 184 is the nearest. Now subtract 184 from 196 to get reminder 12. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }12
Since 12 is less than 23, stop the division. The reminder is 12. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}