Evaluate
256
Factor
2^{8}
Share
Copied to clipboard
\begin{array}{l}\phantom{256)}\phantom{1}\\256\overline{)65536}\\\end{array}
Use the 1^{st} digit 6 from dividend 65536
\begin{array}{l}\phantom{256)}0\phantom{2}\\256\overline{)65536}\\\end{array}
Since 6 is less than 256, use the next digit 5 from dividend 65536 and add 0 to the quotient
\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)65536}\\\end{array}
Use the 2^{nd} digit 5 from dividend 65536
\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)65536}\\\end{array}
Since 65 is less than 256, use the next digit 5 from dividend 65536 and add 0 to the quotient
\begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)65536}\\\end{array}
Use the 3^{rd} digit 5 from dividend 65536
\begin{array}{l}\phantom{256)}002\phantom{6}\\256\overline{)65536}\\\phantom{256)}\underline{\phantom{}512\phantom{99}}\\\phantom{256)}143\\\end{array}
Find closest multiple of 256 to 655. We see that 2 \times 256 = 512 is the nearest. Now subtract 512 from 655 to get reminder 143. Add 2 to quotient.
\begin{array}{l}\phantom{256)}002\phantom{7}\\256\overline{)65536}\\\phantom{256)}\underline{\phantom{}512\phantom{99}}\\\phantom{256)}1433\\\end{array}
Use the 4^{th} digit 3 from dividend 65536
\begin{array}{l}\phantom{256)}0025\phantom{8}\\256\overline{)65536}\\\phantom{256)}\underline{\phantom{}512\phantom{99}}\\\phantom{256)}1433\\\phantom{256)}\underline{\phantom{}1280\phantom{9}}\\\phantom{256)9}153\\\end{array}
Find closest multiple of 256 to 1433. We see that 5 \times 256 = 1280 is the nearest. Now subtract 1280 from 1433 to get reminder 153. Add 5 to quotient.
\begin{array}{l}\phantom{256)}0025\phantom{9}\\256\overline{)65536}\\\phantom{256)}\underline{\phantom{}512\phantom{99}}\\\phantom{256)}1433\\\phantom{256)}\underline{\phantom{}1280\phantom{9}}\\\phantom{256)9}1536\\\end{array}
Use the 5^{th} digit 6 from dividend 65536
\begin{array}{l}\phantom{256)}00256\phantom{10}\\256\overline{)65536}\\\phantom{256)}\underline{\phantom{}512\phantom{99}}\\\phantom{256)}1433\\\phantom{256)}\underline{\phantom{}1280\phantom{9}}\\\phantom{256)9}1536\\\phantom{256)}\underline{\phantom{9}1536\phantom{}}\\\phantom{256)99999}0\\\end{array}
Find closest multiple of 256 to 1536. We see that 6 \times 256 = 1536 is the nearest. Now subtract 1536 from 1536 to get reminder 0. Add 6 to quotient.
\text{Quotient: }256 \text{Reminder: }0
Since 0 is less than 256, stop the division. The reminder is 0. The topmost line 00256 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 256.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}