Evaluate
\frac{26}{3}\approx 8.666666667
Factor
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8.666666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)650}\\\end{array}
Since 6 is less than 75, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)650}\\\end{array}
Since 65 is less than 75, use the next digit 0 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)650}\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{75)}008\phantom{6}\\75\overline{)650}\\\phantom{75)}\underline{\phantom{}600\phantom{}}\\\phantom{75)9}50\\\end{array}
Find closest multiple of 75 to 650. We see that 8 \times 75 = 600 is the nearest. Now subtract 600 from 650 to get reminder 50. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }50
Since 50 is less than 75, stop the division. The reminder is 50. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}