Evaluate
26
Factor
2\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)650}\\\end{array}
Since 6 is less than 25, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{25)}02\phantom{4}\\25\overline{)650}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}15\\\end{array}
Find closest multiple of 25 to 65. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 65 to get reminder 15. Add 2 to quotient.
\begin{array}{l}\phantom{25)}02\phantom{5}\\25\overline{)650}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}150\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{25)}026\phantom{6}\\25\overline{)650}\\\phantom{25)}\underline{\phantom{}50\phantom{9}}\\\phantom{25)}150\\\phantom{25)}\underline{\phantom{}150\phantom{}}\\\phantom{25)999}0\\\end{array}
Find closest multiple of 25 to 150. We see that 6 \times 25 = 150 is the nearest. Now subtract 150 from 150 to get reminder 0. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }0
Since 0 is less than 25, stop the division. The reminder is 0. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}