Solve for m
m=-\frac{9n}{5}+\frac{117}{x}
x\neq 0
Solve for n
n=-\frac{5m}{9}+\frac{65}{x}
x\neq 0
Graph
Share
Copied to clipboard
7605=\left(65m+117n\right)x
Multiply 65 and 117 to get 7605.
7605=65mx+117nx
Use the distributive property to multiply 65m+117n by x.
65mx+117nx=7605
Swap sides so that all variable terms are on the left hand side.
65mx=7605-117nx
Subtract 117nx from both sides.
65xm=7605-117nx
The equation is in standard form.
\frac{65xm}{65x}=\frac{7605-117nx}{65x}
Divide both sides by 65x.
m=\frac{7605-117nx}{65x}
Dividing by 65x undoes the multiplication by 65x.
m=-\frac{9n}{5}+\frac{117}{x}
Divide 7605-117nx by 65x.
7605=\left(65m+117n\right)x
Multiply 65 and 117 to get 7605.
7605=65mx+117nx
Use the distributive property to multiply 65m+117n by x.
65mx+117nx=7605
Swap sides so that all variable terms are on the left hand side.
117nx=7605-65mx
Subtract 65mx from both sides.
117xn=7605-65mx
The equation is in standard form.
\frac{117xn}{117x}=\frac{7605-65mx}{117x}
Divide both sides by 117x.
n=\frac{7605-65mx}{117x}
Dividing by 117x undoes the multiplication by 117x.
n=-\frac{5m}{9}+\frac{65}{x}
Divide 7605-65mx by 117x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}