Evaluate
\frac{1377km}{20}
Expand
\frac{1377km}{20}
Share
Copied to clipboard
\frac{260+1}{4}km+\frac{3\times 5+4}{5}km-\frac{1}{5}km
Multiply 65 and 4 to get 260.
\frac{261}{4}km+\frac{3\times 5+4}{5}km-\frac{1}{5}km
Add 260 and 1 to get 261.
\frac{261}{4}km+\frac{15+4}{5}km-\frac{1}{5}km
Multiply 3 and 5 to get 15.
\frac{261}{4}km+\frac{19}{5}km-\frac{1}{5}km
Add 15 and 4 to get 19.
\frac{1381}{20}km-\frac{1}{5}km
Combine \frac{261}{4}km and \frac{19}{5}km to get \frac{1381}{20}km.
\frac{1377}{20}km
Combine \frac{1381}{20}km and -\frac{1}{5}km to get \frac{1377}{20}km.
\frac{260+1}{4}km+\frac{3\times 5+4}{5}km-\frac{1}{5}km
Multiply 65 and 4 to get 260.
\frac{261}{4}km+\frac{3\times 5+4}{5}km-\frac{1}{5}km
Add 260 and 1 to get 261.
\frac{261}{4}km+\frac{15+4}{5}km-\frac{1}{5}km
Multiply 3 and 5 to get 15.
\frac{261}{4}km+\frac{19}{5}km-\frac{1}{5}km
Add 15 and 4 to get 19.
\frac{1381}{20}km-\frac{1}{5}km
Combine \frac{261}{4}km and \frac{19}{5}km to get \frac{1381}{20}km.
\frac{1377}{20}km
Combine \frac{1381}{20}km and -\frac{1}{5}km to get \frac{1377}{20}km.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}