Evaluate
\frac{13}{12}\approx 1.083333333
Factor
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)65}\\\end{array}
Use the 1^{st} digit 6 from dividend 65
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)65}\\\end{array}
Since 6 is less than 60, use the next digit 5 from dividend 65 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)65}\\\end{array}
Use the 2^{nd} digit 5 from dividend 65
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)65}\\\phantom{60)}\underline{\phantom{}60\phantom{}}\\\phantom{60)9}5\\\end{array}
Find closest multiple of 60 to 65. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 65 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 60, stop the division. The reminder is 5. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}