Solve for t
t=-1+2\sqrt{3}i\approx -1+3.464101615i
t=-2\sqrt{3}i-1\approx -1-3.464101615i
Share
Copied to clipboard
-10t-5t^{2}=65
Swap sides so that all variable terms are on the left hand side.
-10t-5t^{2}-65=0
Subtract 65 from both sides.
-5t^{2}-10t-65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-5\right)\left(-65\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -10 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±\sqrt{100-4\left(-5\right)\left(-65\right)}}{2\left(-5\right)}
Square -10.
t=\frac{-\left(-10\right)±\sqrt{100+20\left(-65\right)}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-\left(-10\right)±\sqrt{100-1300}}{2\left(-5\right)}
Multiply 20 times -65.
t=\frac{-\left(-10\right)±\sqrt{-1200}}{2\left(-5\right)}
Add 100 to -1300.
t=\frac{-\left(-10\right)±20\sqrt{3}i}{2\left(-5\right)}
Take the square root of -1200.
t=\frac{10±20\sqrt{3}i}{2\left(-5\right)}
The opposite of -10 is 10.
t=\frac{10±20\sqrt{3}i}{-10}
Multiply 2 times -5.
t=\frac{10+20\sqrt{3}i}{-10}
Now solve the equation t=\frac{10±20\sqrt{3}i}{-10} when ± is plus. Add 10 to 20i\sqrt{3}.
t=-2\sqrt{3}i-1
Divide 10+20i\sqrt{3} by -10.
t=\frac{-20\sqrt{3}i+10}{-10}
Now solve the equation t=\frac{10±20\sqrt{3}i}{-10} when ± is minus. Subtract 20i\sqrt{3} from 10.
t=-1+2\sqrt{3}i
Divide 10-20i\sqrt{3} by -10.
t=-2\sqrt{3}i-1 t=-1+2\sqrt{3}i
The equation is now solved.
-10t-5t^{2}=65
Swap sides so that all variable terms are on the left hand side.
-5t^{2}-10t=65
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}-10t}{-5}=\frac{65}{-5}
Divide both sides by -5.
t^{2}+\left(-\frac{10}{-5}\right)t=\frac{65}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}+2t=\frac{65}{-5}
Divide -10 by -5.
t^{2}+2t=-13
Divide 65 by -5.
t^{2}+2t+1^{2}=-13+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+2t+1=-13+1
Square 1.
t^{2}+2t+1=-12
Add -13 to 1.
\left(t+1\right)^{2}=-12
Factor t^{2}+2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+1\right)^{2}}=\sqrt{-12}
Take the square root of both sides of the equation.
t+1=2\sqrt{3}i t+1=-2\sqrt{3}i
Simplify.
t=-1+2\sqrt{3}i t=-2\sqrt{3}i-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}