Evaluate
\frac{649}{35}\approx 18.542857143
Factor
\frac{11 \cdot 59}{5 \cdot 7} = 18\frac{19}{35} = 18.542857142857144
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)649}\\\end{array}
Use the 1^{st} digit 6 from dividend 649
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)649}\\\end{array}
Since 6 is less than 35, use the next digit 4 from dividend 649 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)649}\\\end{array}
Use the 2^{nd} digit 4 from dividend 649
\begin{array}{l}\phantom{35)}01\phantom{4}\\35\overline{)649}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)}29\\\end{array}
Find closest multiple of 35 to 64. We see that 1 \times 35 = 35 is the nearest. Now subtract 35 from 64 to get reminder 29. Add 1 to quotient.
\begin{array}{l}\phantom{35)}01\phantom{5}\\35\overline{)649}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)}299\\\end{array}
Use the 3^{rd} digit 9 from dividend 649
\begin{array}{l}\phantom{35)}018\phantom{6}\\35\overline{)649}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)}299\\\phantom{35)}\underline{\phantom{}280\phantom{}}\\\phantom{35)9}19\\\end{array}
Find closest multiple of 35 to 299. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 299 to get reminder 19. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }19
Since 19 is less than 35, stop the division. The reminder is 19. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}