Factor
8\left(10x+9\right)^{2}
Evaluate
8\left(10x+9\right)^{2}
Graph
Share
Copied to clipboard
8\left(81+180x+100x^{2}\right)
Factor out 8.
\left(10x+9\right)^{2}
Consider 81+180x+100x^{2}. Use the perfect square formula, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, where a=10x and b=9.
8\left(10x+9\right)^{2}
Rewrite the complete factored expression.
factor(800x^{2}+1440x+648)
This trinomial has the form of a trinomial square, perhaps multiplied by a common factor. Trinomial squares can be factored by finding the square roots of the leading and trailing terms.
gcf(800,1440,648)=8
Find the greatest common factor of the coefficients.
8\left(100x^{2}+180x+81\right)
Factor out 8.
\sqrt{100x^{2}}=10x
Find the square root of the leading term, 100x^{2}.
\sqrt{81}=9
Find the square root of the trailing term, 81.
8\left(10x+9\right)^{2}
The trinomial square is the square of the binomial that is the sum or difference of the square roots of the leading and trailing terms, with the sign determined by the sign of the middle term of the trinomial square.
800x^{2}+1440x+648=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1440±\sqrt{1440^{2}-4\times 800\times 648}}{2\times 800}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1440±\sqrt{2073600-4\times 800\times 648}}{2\times 800}
Square 1440.
x=\frac{-1440±\sqrt{2073600-3200\times 648}}{2\times 800}
Multiply -4 times 800.
x=\frac{-1440±\sqrt{2073600-2073600}}{2\times 800}
Multiply -3200 times 648.
x=\frac{-1440±\sqrt{0}}{2\times 800}
Add 2073600 to -2073600.
x=\frac{-1440±0}{2\times 800}
Take the square root of 0.
x=\frac{-1440±0}{1600}
Multiply 2 times 800.
800x^{2}+1440x+648=800\left(x-\left(-\frac{9}{10}\right)\right)\left(x-\left(-\frac{9}{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{10} for x_{1} and -\frac{9}{10} for x_{2}.
800x^{2}+1440x+648=800\left(x+\frac{9}{10}\right)\left(x+\frac{9}{10}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
800x^{2}+1440x+648=800\times \frac{10x+9}{10}\left(x+\frac{9}{10}\right)
Add \frac{9}{10} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
800x^{2}+1440x+648=800\times \frac{10x+9}{10}\times \frac{10x+9}{10}
Add \frac{9}{10} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
800x^{2}+1440x+648=800\times \frac{\left(10x+9\right)\left(10x+9\right)}{10\times 10}
Multiply \frac{10x+9}{10} times \frac{10x+9}{10} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
800x^{2}+1440x+648=800\times \frac{\left(10x+9\right)\left(10x+9\right)}{100}
Multiply 10 times 10.
800x^{2}+1440x+648=8\left(10x+9\right)\left(10x+9\right)
Cancel out 100, the greatest common factor in 800 and 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}