Evaluate
23
Factor
23
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)644}\\\end{array}
Use the 1^{st} digit 6 from dividend 644
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)644}\\\end{array}
Since 6 is less than 28, use the next digit 4 from dividend 644 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)644}\\\end{array}
Use the 2^{nd} digit 4 from dividend 644
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)644}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}8\\\end{array}
Find closest multiple of 28 to 64. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 64 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)644}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 644
\begin{array}{l}\phantom{28)}023\phantom{6}\\28\overline{)644}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)9}84\\\phantom{28)}\underline{\phantom{9}84\phantom{}}\\\phantom{28)999}0\\\end{array}
Find closest multiple of 28 to 84. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }0
Since 0 is less than 28, stop the division. The reminder is 0. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}