Solve for y
y=\frac{1}{8}=0.125
y=-\frac{1}{8}=-0.125
Graph
Share
Copied to clipboard
64y^{2}-1=0
Divide both sides by 10.
\left(8y-1\right)\left(8y+1\right)=0
Consider 64y^{2}-1. Rewrite 64y^{2}-1 as \left(8y\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{1}{8} y=-\frac{1}{8}
To find equation solutions, solve 8y-1=0 and 8y+1=0.
640y^{2}=10
Add 10 to both sides. Anything plus zero gives itself.
y^{2}=\frac{10}{640}
Divide both sides by 640.
y^{2}=\frac{1}{64}
Reduce the fraction \frac{10}{640} to lowest terms by extracting and canceling out 10.
y=\frac{1}{8} y=-\frac{1}{8}
Take the square root of both sides of the equation.
640y^{2}-10=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 640\left(-10\right)}}{2\times 640}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 640 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 640\left(-10\right)}}{2\times 640}
Square 0.
y=\frac{0±\sqrt{-2560\left(-10\right)}}{2\times 640}
Multiply -4 times 640.
y=\frac{0±\sqrt{25600}}{2\times 640}
Multiply -2560 times -10.
y=\frac{0±160}{2\times 640}
Take the square root of 25600.
y=\frac{0±160}{1280}
Multiply 2 times 640.
y=\frac{1}{8}
Now solve the equation y=\frac{0±160}{1280} when ± is plus. Reduce the fraction \frac{160}{1280} to lowest terms by extracting and canceling out 160.
y=-\frac{1}{8}
Now solve the equation y=\frac{0±160}{1280} when ± is minus. Reduce the fraction \frac{-160}{1280} to lowest terms by extracting and canceling out 160.
y=\frac{1}{8} y=-\frac{1}{8}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}