Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

640x^{2}=36
Add 36 to both sides. Anything plus zero gives itself.
x^{2}=\frac{36}{640}
Divide both sides by 640.
x^{2}=\frac{9}{160}
Reduce the fraction \frac{36}{640} to lowest terms by extracting and canceling out 4.
x=\frac{3\sqrt{10}}{40} x=-\frac{3\sqrt{10}}{40}
Take the square root of both sides of the equation.
640x^{2}-36=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 640\left(-36\right)}}{2\times 640}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 640 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 640\left(-36\right)}}{2\times 640}
Square 0.
x=\frac{0±\sqrt{-2560\left(-36\right)}}{2\times 640}
Multiply -4 times 640.
x=\frac{0±\sqrt{92160}}{2\times 640}
Multiply -2560 times -36.
x=\frac{0±96\sqrt{10}}{2\times 640}
Take the square root of 92160.
x=\frac{0±96\sqrt{10}}{1280}
Multiply 2 times 640.
x=\frac{3\sqrt{10}}{40}
Now solve the equation x=\frac{0±96\sqrt{10}}{1280} when ± is plus.
x=-\frac{3\sqrt{10}}{40}
Now solve the equation x=\frac{0±96\sqrt{10}}{1280} when ± is minus.
x=\frac{3\sqrt{10}}{40} x=-\frac{3\sqrt{10}}{40}
The equation is now solved.