Solve for x
x=\frac{3\sqrt{10}}{40}\approx 0.237170825
x=-\frac{3\sqrt{10}}{40}\approx -0.237170825
Graph
Share
Copied to clipboard
640x^{2}=36
Add 36 to both sides. Anything plus zero gives itself.
x^{2}=\frac{36}{640}
Divide both sides by 640.
x^{2}=\frac{9}{160}
Reduce the fraction \frac{36}{640} to lowest terms by extracting and canceling out 4.
x=\frac{3\sqrt{10}}{40} x=-\frac{3\sqrt{10}}{40}
Take the square root of both sides of the equation.
640x^{2}-36=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 640\left(-36\right)}}{2\times 640}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 640 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 640\left(-36\right)}}{2\times 640}
Square 0.
x=\frac{0±\sqrt{-2560\left(-36\right)}}{2\times 640}
Multiply -4 times 640.
x=\frac{0±\sqrt{92160}}{2\times 640}
Multiply -2560 times -36.
x=\frac{0±96\sqrt{10}}{2\times 640}
Take the square root of 92160.
x=\frac{0±96\sqrt{10}}{1280}
Multiply 2 times 640.
x=\frac{3\sqrt{10}}{40}
Now solve the equation x=\frac{0±96\sqrt{10}}{1280} when ± is plus.
x=-\frac{3\sqrt{10}}{40}
Now solve the equation x=\frac{0±96\sqrt{10}}{1280} when ± is minus.
x=\frac{3\sqrt{10}}{40} x=-\frac{3\sqrt{10}}{40}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}