Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=\frac{1}{5}=0.2
Graph
Share
Copied to clipboard
64x^{2}=\left(2-2x\right)^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
64x^{2}=4-8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
64x^{2}-4=-8x+4x^{2}
Subtract 4 from both sides.
64x^{2}-4+8x=4x^{2}
Add 8x to both sides.
64x^{2}-4+8x-4x^{2}=0
Subtract 4x^{2} from both sides.
60x^{2}-4+8x=0
Combine 64x^{2} and -4x^{2} to get 60x^{2}.
15x^{2}-1+2x=0
Divide both sides by 4.
15x^{2}+2x-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=15\left(-1\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(15x^{2}-3x\right)+\left(5x-1\right)
Rewrite 15x^{2}+2x-1 as \left(15x^{2}-3x\right)+\left(5x-1\right).
3x\left(5x-1\right)+5x-1
Factor out 3x in 15x^{2}-3x.
\left(5x-1\right)\left(3x+1\right)
Factor out common term 5x-1 by using distributive property.
x=\frac{1}{5} x=-\frac{1}{3}
To find equation solutions, solve 5x-1=0 and 3x+1=0.
64x^{2}=\left(2-2x\right)^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
64x^{2}=4-8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
64x^{2}-4=-8x+4x^{2}
Subtract 4 from both sides.
64x^{2}-4+8x=4x^{2}
Add 8x to both sides.
64x^{2}-4+8x-4x^{2}=0
Subtract 4x^{2} from both sides.
60x^{2}-4+8x=0
Combine 64x^{2} and -4x^{2} to get 60x^{2}.
60x^{2}+8x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 60\left(-4\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 60\left(-4\right)}}{2\times 60}
Square 8.
x=\frac{-8±\sqrt{64-240\left(-4\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-8±\sqrt{64+960}}{2\times 60}
Multiply -240 times -4.
x=\frac{-8±\sqrt{1024}}{2\times 60}
Add 64 to 960.
x=\frac{-8±32}{2\times 60}
Take the square root of 1024.
x=\frac{-8±32}{120}
Multiply 2 times 60.
x=\frac{24}{120}
Now solve the equation x=\frac{-8±32}{120} when ± is plus. Add -8 to 32.
x=\frac{1}{5}
Reduce the fraction \frac{24}{120} to lowest terms by extracting and canceling out 24.
x=-\frac{40}{120}
Now solve the equation x=\frac{-8±32}{120} when ± is minus. Subtract 32 from -8.
x=-\frac{1}{3}
Reduce the fraction \frac{-40}{120} to lowest terms by extracting and canceling out 40.
x=\frac{1}{5} x=-\frac{1}{3}
The equation is now solved.
64x^{2}=\left(2-2x\right)^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
64x^{2}=4-8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
64x^{2}+8x=4+4x^{2}
Add 8x to both sides.
64x^{2}+8x-4x^{2}=4
Subtract 4x^{2} from both sides.
60x^{2}+8x=4
Combine 64x^{2} and -4x^{2} to get 60x^{2}.
\frac{60x^{2}+8x}{60}=\frac{4}{60}
Divide both sides by 60.
x^{2}+\frac{8}{60}x=\frac{4}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+\frac{2}{15}x=\frac{4}{60}
Reduce the fraction \frac{8}{60} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{2}{15}x=\frac{1}{15}
Reduce the fraction \frac{4}{60} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{2}{15}x+\left(\frac{1}{15}\right)^{2}=\frac{1}{15}+\left(\frac{1}{15}\right)^{2}
Divide \frac{2}{15}, the coefficient of the x term, by 2 to get \frac{1}{15}. Then add the square of \frac{1}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{15}x+\frac{1}{225}=\frac{1}{15}+\frac{1}{225}
Square \frac{1}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{15}x+\frac{1}{225}=\frac{16}{225}
Add \frac{1}{15} to \frac{1}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{15}\right)^{2}=\frac{16}{225}
Factor x^{2}+\frac{2}{15}x+\frac{1}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{15}\right)^{2}}=\sqrt{\frac{16}{225}}
Take the square root of both sides of the equation.
x+\frac{1}{15}=\frac{4}{15} x+\frac{1}{15}=-\frac{4}{15}
Simplify.
x=\frac{1}{5} x=-\frac{1}{3}
Subtract \frac{1}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}