Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}=\frac{81}{64}
Divide both sides by 64.
y^{2}-\frac{81}{64}=0
Subtract \frac{81}{64} from both sides.
64y^{2}-81=0
Multiply both sides by 64.
\left(8y-9\right)\left(8y+9\right)=0
Consider 64y^{2}-81. Rewrite 64y^{2}-81 as \left(8y\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=\frac{9}{8} y=-\frac{9}{8}
To find equation solutions, solve 8y-9=0 and 8y+9=0.
y^{2}=\frac{81}{64}
Divide both sides by 64.
y=\frac{9}{8} y=-\frac{9}{8}
Take the square root of both sides of the equation.
y^{2}=\frac{81}{64}
Divide both sides by 64.
y^{2}-\frac{81}{64}=0
Subtract \frac{81}{64} from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{64}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{81}{64} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-\frac{81}{64}\right)}}{2}
Square 0.
y=\frac{0±\sqrt{\frac{81}{16}}}{2}
Multiply -4 times -\frac{81}{64}.
y=\frac{0±\frac{9}{4}}{2}
Take the square root of \frac{81}{16}.
y=\frac{9}{8}
Now solve the equation y=\frac{0±\frac{9}{4}}{2} when ± is plus.
y=-\frac{9}{8}
Now solve the equation y=\frac{0±\frac{9}{4}}{2} when ± is minus.
y=\frac{9}{8} y=-\frac{9}{8}
The equation is now solved.