Skip to main content
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

64g^{2}-933=0
Add -969 and 36 to get -933.
64g^{2}=933
Add 933 to both sides. Anything plus zero gives itself.
g^{2}=\frac{933}{64}
Divide both sides by 64.
g=\frac{\sqrt{933}}{8} g=-\frac{\sqrt{933}}{8}
Take the square root of both sides of the equation.
64g^{2}-933=0
Add -969 and 36 to get -933.
g=\frac{0±\sqrt{0^{2}-4\times 64\left(-933\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 0 for b, and -933 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{0±\sqrt{-4\times 64\left(-933\right)}}{2\times 64}
Square 0.
g=\frac{0±\sqrt{-256\left(-933\right)}}{2\times 64}
Multiply -4 times 64.
g=\frac{0±\sqrt{238848}}{2\times 64}
Multiply -256 times -933.
g=\frac{0±16\sqrt{933}}{2\times 64}
Take the square root of 238848.
g=\frac{0±16\sqrt{933}}{128}
Multiply 2 times 64.
g=\frac{\sqrt{933}}{8}
Now solve the equation g=\frac{0±16\sqrt{933}}{128} when ± is plus.
g=-\frac{\sqrt{933}}{8}
Now solve the equation g=\frac{0±16\sqrt{933}}{128} when ± is minus.
g=\frac{\sqrt{933}}{8} g=-\frac{\sqrt{933}}{8}
The equation is now solved.