Solve for g
g = \frac{\sqrt{933}}{8} \approx 3.818131087
g = -\frac{\sqrt{933}}{8} \approx -3.818131087
Share
Copied to clipboard
64g^{2}-933=0
Add -969 and 36 to get -933.
64g^{2}=933
Add 933 to both sides. Anything plus zero gives itself.
g^{2}=\frac{933}{64}
Divide both sides by 64.
g=\frac{\sqrt{933}}{8} g=-\frac{\sqrt{933}}{8}
Take the square root of both sides of the equation.
64g^{2}-933=0
Add -969 and 36 to get -933.
g=\frac{0±\sqrt{0^{2}-4\times 64\left(-933\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 0 for b, and -933 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{0±\sqrt{-4\times 64\left(-933\right)}}{2\times 64}
Square 0.
g=\frac{0±\sqrt{-256\left(-933\right)}}{2\times 64}
Multiply -4 times 64.
g=\frac{0±\sqrt{238848}}{2\times 64}
Multiply -256 times -933.
g=\frac{0±16\sqrt{933}}{2\times 64}
Take the square root of 238848.
g=\frac{0±16\sqrt{933}}{128}
Multiply 2 times 64.
g=\frac{\sqrt{933}}{8}
Now solve the equation g=\frac{0±16\sqrt{933}}{128} when ± is plus.
g=-\frac{\sqrt{933}}{8}
Now solve the equation g=\frac{0±16\sqrt{933}}{128} when ± is minus.
g=\frac{\sqrt{933}}{8} g=-\frac{\sqrt{933}}{8}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}