Solve for d
d=-\frac{2\left(n-64\right)}{n\left(n-1\right)}
n\neq 1\text{ and }n\neq 0
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{\sqrt{d^{2}+508d+4}-d+2}{2d}\text{; }n=-\frac{-\sqrt{d^{2}+508d+4}-d+2}{2d}\text{, }&d\neq 0\\n=64\text{, }&d=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{\sqrt{d^{2}+508d+4}-d+2}{2d}\text{; }n=-\frac{-\sqrt{d^{2}+508d+4}-d+2}{2d}\text{, }&d\leq -96\sqrt{7}-254\text{ or }\left(d\neq 0\text{ and }d\geq 96\sqrt{7}-254\right)\\n=64\text{, }&d=0\end{matrix}\right.
Share
Copied to clipboard
128=2n+n\left(n-1\right)d
Multiply both sides of the equation by 2.
128=2n+\left(n^{2}-n\right)d
Use the distributive property to multiply n by n-1.
128=2n+n^{2}d-nd
Use the distributive property to multiply n^{2}-n by d.
2n+n^{2}d-nd=128
Swap sides so that all variable terms are on the left hand side.
n^{2}d-nd=128-2n
Subtract 2n from both sides.
\left(n^{2}-n\right)d=128-2n
Combine all terms containing d.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{128-2n}{n^{2}-n}
Divide both sides by n^{2}-n.
d=\frac{128-2n}{n^{2}-n}
Dividing by n^{2}-n undoes the multiplication by n^{2}-n.
d=\frac{2\left(64-n\right)}{n\left(n-1\right)}
Divide 128-2n by n^{2}-n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}