Solve for z
z=-4+4\sqrt{3}i\approx -4+6.92820323i
z=-4\sqrt{3}i-4\approx -4-6.92820323i
Share
Copied to clipboard
z^{2}+8z+64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-8±\sqrt{8^{2}-4\times 64}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-8±\sqrt{64-4\times 64}}{2}
Square 8.
z=\frac{-8±\sqrt{64-256}}{2}
Multiply -4 times 64.
z=\frac{-8±\sqrt{-192}}{2}
Add 64 to -256.
z=\frac{-8±8\sqrt{3}i}{2}
Take the square root of -192.
z=\frac{-8+8\sqrt{3}i}{2}
Now solve the equation z=\frac{-8±8\sqrt{3}i}{2} when ± is plus. Add -8 to 8i\sqrt{3}.
z=-4+4\sqrt{3}i
Divide -8+8i\sqrt{3} by 2.
z=\frac{-8\sqrt{3}i-8}{2}
Now solve the equation z=\frac{-8±8\sqrt{3}i}{2} when ± is minus. Subtract 8i\sqrt{3} from -8.
z=-4\sqrt{3}i-4
Divide -8-8i\sqrt{3} by 2.
z=-4+4\sqrt{3}i z=-4\sqrt{3}i-4
The equation is now solved.
z^{2}+8z+64=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}+8z+64-64=-64
Subtract 64 from both sides of the equation.
z^{2}+8z=-64
Subtracting 64 from itself leaves 0.
z^{2}+8z+4^{2}=-64+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+8z+16=-64+16
Square 4.
z^{2}+8z+16=-48
Add -64 to 16.
\left(z+4\right)^{2}=-48
Factor z^{2}+8z+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+4\right)^{2}}=\sqrt{-48}
Take the square root of both sides of the equation.
z+4=4\sqrt{3}i z+4=-4\sqrt{3}i
Simplify.
z=-4+4\sqrt{3}i z=-4\sqrt{3}i-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}