Evaluate
2131
Factor
2131
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)63930}\\\end{array}
Use the 1^{st} digit 6 from dividend 63930
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)63930}\\\end{array}
Since 6 is less than 30, use the next digit 3 from dividend 63930 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)63930}\\\end{array}
Use the 2^{nd} digit 3 from dividend 63930
\begin{array}{l}\phantom{30)}02\phantom{4}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}3\\\end{array}
Find closest multiple of 30 to 63. We see that 2 \times 30 = 60 is the nearest. Now subtract 60 from 63 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{30)}02\phantom{5}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\end{array}
Use the 3^{rd} digit 9 from dividend 63930
\begin{array}{l}\phantom{30)}021\phantom{6}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\phantom{30)}\underline{\phantom{9}30\phantom{99}}\\\phantom{30)99}9\\\end{array}
Find closest multiple of 30 to 39. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 39 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{30)}021\phantom{7}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\phantom{30)}\underline{\phantom{9}30\phantom{99}}\\\phantom{30)99}93\\\end{array}
Use the 4^{th} digit 3 from dividend 63930
\begin{array}{l}\phantom{30)}0213\phantom{8}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\phantom{30)}\underline{\phantom{9}30\phantom{99}}\\\phantom{30)99}93\\\phantom{30)}\underline{\phantom{99}90\phantom{9}}\\\phantom{30)999}3\\\end{array}
Find closest multiple of 30 to 93. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 93 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{30)}0213\phantom{9}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\phantom{30)}\underline{\phantom{9}30\phantom{99}}\\\phantom{30)99}93\\\phantom{30)}\underline{\phantom{99}90\phantom{9}}\\\phantom{30)999}30\\\end{array}
Use the 5^{th} digit 0 from dividend 63930
\begin{array}{l}\phantom{30)}02131\phantom{10}\\30\overline{)63930}\\\phantom{30)}\underline{\phantom{}60\phantom{999}}\\\phantom{30)9}39\\\phantom{30)}\underline{\phantom{9}30\phantom{99}}\\\phantom{30)99}93\\\phantom{30)}\underline{\phantom{99}90\phantom{9}}\\\phantom{30)999}30\\\phantom{30)}\underline{\phantom{999}30\phantom{}}\\\phantom{30)99999}0\\\end{array}
Find closest multiple of 30 to 30. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 30 to get reminder 0. Add 1 to quotient.
\text{Quotient: }2131 \text{Reminder: }0
Since 0 is less than 30, stop the division. The reminder is 0. The topmost line 02131 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}