Evaluate
\frac{638243}{69}\approx 9249.898550725
Factor
\frac{61 \cdot 10463}{3 \cdot 23} = 9249\frac{62}{69} = 9249.898550724638
Share
Copied to clipboard
\begin{array}{l}\phantom{69)}\phantom{1}\\69\overline{)638243}\\\end{array}
Use the 1^{st} digit 6 from dividend 638243
\begin{array}{l}\phantom{69)}0\phantom{2}\\69\overline{)638243}\\\end{array}
Since 6 is less than 69, use the next digit 3 from dividend 638243 and add 0 to the quotient
\begin{array}{l}\phantom{69)}0\phantom{3}\\69\overline{)638243}\\\end{array}
Use the 2^{nd} digit 3 from dividend 638243
\begin{array}{l}\phantom{69)}00\phantom{4}\\69\overline{)638243}\\\end{array}
Since 63 is less than 69, use the next digit 8 from dividend 638243 and add 0 to the quotient
\begin{array}{l}\phantom{69)}00\phantom{5}\\69\overline{)638243}\\\end{array}
Use the 3^{rd} digit 8 from dividend 638243
\begin{array}{l}\phantom{69)}009\phantom{6}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}17\\\end{array}
Find closest multiple of 69 to 638. We see that 9 \times 69 = 621 is the nearest. Now subtract 621 from 638 to get reminder 17. Add 9 to quotient.
\begin{array}{l}\phantom{69)}009\phantom{7}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\end{array}
Use the 4^{th} digit 2 from dividend 638243
\begin{array}{l}\phantom{69)}0092\phantom{8}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\phantom{69)}\underline{\phantom{9}138\phantom{99}}\\\phantom{69)99}34\\\end{array}
Find closest multiple of 69 to 172. We see that 2 \times 69 = 138 is the nearest. Now subtract 138 from 172 to get reminder 34. Add 2 to quotient.
\begin{array}{l}\phantom{69)}0092\phantom{9}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\phantom{69)}\underline{\phantom{9}138\phantom{99}}\\\phantom{69)99}344\\\end{array}
Use the 5^{th} digit 4 from dividend 638243
\begin{array}{l}\phantom{69)}00924\phantom{10}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\phantom{69)}\underline{\phantom{9}138\phantom{99}}\\\phantom{69)99}344\\\phantom{69)}\underline{\phantom{99}276\phantom{9}}\\\phantom{69)999}68\\\end{array}
Find closest multiple of 69 to 344. We see that 4 \times 69 = 276 is the nearest. Now subtract 276 from 344 to get reminder 68. Add 4 to quotient.
\begin{array}{l}\phantom{69)}00924\phantom{11}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\phantom{69)}\underline{\phantom{9}138\phantom{99}}\\\phantom{69)99}344\\\phantom{69)}\underline{\phantom{99}276\phantom{9}}\\\phantom{69)999}683\\\end{array}
Use the 6^{th} digit 3 from dividend 638243
\begin{array}{l}\phantom{69)}009249\phantom{12}\\69\overline{)638243}\\\phantom{69)}\underline{\phantom{}621\phantom{999}}\\\phantom{69)9}172\\\phantom{69)}\underline{\phantom{9}138\phantom{99}}\\\phantom{69)99}344\\\phantom{69)}\underline{\phantom{99}276\phantom{9}}\\\phantom{69)999}683\\\phantom{69)}\underline{\phantom{999}621\phantom{}}\\\phantom{69)9999}62\\\end{array}
Find closest multiple of 69 to 683. We see that 9 \times 69 = 621 is the nearest. Now subtract 621 from 683 to get reminder 62. Add 9 to quotient.
\text{Quotient: }9249 \text{Reminder: }62
Since 62 is less than 69, stop the division. The reminder is 62. The topmost line 009249 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9249.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}