Evaluate
\frac{6369}{335}\approx 19.011940299
Factor
\frac{3 \cdot 11 \cdot 193}{5 \cdot 67} = 19\frac{4}{335} = 19.01194029850746
Share
Copied to clipboard
\begin{array}{l}\phantom{335)}\phantom{1}\\335\overline{)6369}\\\end{array}
Use the 1^{st} digit 6 from dividend 6369
\begin{array}{l}\phantom{335)}0\phantom{2}\\335\overline{)6369}\\\end{array}
Since 6 is less than 335, use the next digit 3 from dividend 6369 and add 0 to the quotient
\begin{array}{l}\phantom{335)}0\phantom{3}\\335\overline{)6369}\\\end{array}
Use the 2^{nd} digit 3 from dividend 6369
\begin{array}{l}\phantom{335)}00\phantom{4}\\335\overline{)6369}\\\end{array}
Since 63 is less than 335, use the next digit 6 from dividend 6369 and add 0 to the quotient
\begin{array}{l}\phantom{335)}00\phantom{5}\\335\overline{)6369}\\\end{array}
Use the 3^{rd} digit 6 from dividend 6369
\begin{array}{l}\phantom{335)}001\phantom{6}\\335\overline{)6369}\\\phantom{335)}\underline{\phantom{}335\phantom{9}}\\\phantom{335)}301\\\end{array}
Find closest multiple of 335 to 636. We see that 1 \times 335 = 335 is the nearest. Now subtract 335 from 636 to get reminder 301. Add 1 to quotient.
\begin{array}{l}\phantom{335)}001\phantom{7}\\335\overline{)6369}\\\phantom{335)}\underline{\phantom{}335\phantom{9}}\\\phantom{335)}3019\\\end{array}
Use the 4^{th} digit 9 from dividend 6369
\begin{array}{l}\phantom{335)}0019\phantom{8}\\335\overline{)6369}\\\phantom{335)}\underline{\phantom{}335\phantom{9}}\\\phantom{335)}3019\\\phantom{335)}\underline{\phantom{}3015\phantom{}}\\\phantom{335)999}4\\\end{array}
Find closest multiple of 335 to 3019. We see that 9 \times 335 = 3015 is the nearest. Now subtract 3015 from 3019 to get reminder 4. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }4
Since 4 is less than 335, stop the division. The reminder is 4. The topmost line 0019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}