Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

630\times 2=n\left(7+5n+2\right)
Multiply both sides by 2.
1260=n\left(7+5n+2\right)
Multiply 630 and 2 to get 1260.
1260=n\left(9+5n\right)
Add 7 and 2 to get 9.
1260=9n+5n^{2}
Use the distributive property to multiply n by 9+5n.
9n+5n^{2}=1260
Swap sides so that all variable terms are on the left hand side.
9n+5n^{2}-1260=0
Subtract 1260 from both sides.
5n^{2}+9n-1260=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-9±\sqrt{9^{2}-4\times 5\left(-1260\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 9 for b, and -1260 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-9±\sqrt{81-4\times 5\left(-1260\right)}}{2\times 5}
Square 9.
n=\frac{-9±\sqrt{81-20\left(-1260\right)}}{2\times 5}
Multiply -4 times 5.
n=\frac{-9±\sqrt{81+25200}}{2\times 5}
Multiply -20 times -1260.
n=\frac{-9±\sqrt{25281}}{2\times 5}
Add 81 to 25200.
n=\frac{-9±159}{2\times 5}
Take the square root of 25281.
n=\frac{-9±159}{10}
Multiply 2 times 5.
n=\frac{150}{10}
Now solve the equation n=\frac{-9±159}{10} when ± is plus. Add -9 to 159.
n=15
Divide 150 by 10.
n=-\frac{168}{10}
Now solve the equation n=\frac{-9±159}{10} when ± is minus. Subtract 159 from -9.
n=-\frac{84}{5}
Reduce the fraction \frac{-168}{10} to lowest terms by extracting and canceling out 2.
n=15 n=-\frac{84}{5}
The equation is now solved.
630\times 2=n\left(7+5n+2\right)
Multiply both sides by 2.
1260=n\left(7+5n+2\right)
Multiply 630 and 2 to get 1260.
1260=n\left(9+5n\right)
Add 7 and 2 to get 9.
1260=9n+5n^{2}
Use the distributive property to multiply n by 9+5n.
9n+5n^{2}=1260
Swap sides so that all variable terms are on the left hand side.
5n^{2}+9n=1260
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5n^{2}+9n}{5}=\frac{1260}{5}
Divide both sides by 5.
n^{2}+\frac{9}{5}n=\frac{1260}{5}
Dividing by 5 undoes the multiplication by 5.
n^{2}+\frac{9}{5}n=252
Divide 1260 by 5.
n^{2}+\frac{9}{5}n+\left(\frac{9}{10}\right)^{2}=252+\left(\frac{9}{10}\right)^{2}
Divide \frac{9}{5}, the coefficient of the x term, by 2 to get \frac{9}{10}. Then add the square of \frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{9}{5}n+\frac{81}{100}=252+\frac{81}{100}
Square \frac{9}{10} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{9}{5}n+\frac{81}{100}=\frac{25281}{100}
Add 252 to \frac{81}{100}.
\left(n+\frac{9}{10}\right)^{2}=\frac{25281}{100}
Factor n^{2}+\frac{9}{5}n+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{9}{10}\right)^{2}}=\sqrt{\frac{25281}{100}}
Take the square root of both sides of the equation.
n+\frac{9}{10}=\frac{159}{10} n+\frac{9}{10}=-\frac{159}{10}
Simplify.
n=15 n=-\frac{84}{5}
Subtract \frac{9}{10} from both sides of the equation.