Factor
\left(9x-2\right)\left(7x+4\right)
Evaluate
\left(9x-2\right)\left(7x+4\right)
Graph
Share
Copied to clipboard
a+b=22 ab=63\left(-8\right)=-504
Factor the expression by grouping. First, the expression needs to be rewritten as 63x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,504 -2,252 -3,168 -4,126 -6,84 -7,72 -8,63 -9,56 -12,42 -14,36 -18,28 -21,24
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -504.
-1+504=503 -2+252=250 -3+168=165 -4+126=122 -6+84=78 -7+72=65 -8+63=55 -9+56=47 -12+42=30 -14+36=22 -18+28=10 -21+24=3
Calculate the sum for each pair.
a=-14 b=36
The solution is the pair that gives sum 22.
\left(63x^{2}-14x\right)+\left(36x-8\right)
Rewrite 63x^{2}+22x-8 as \left(63x^{2}-14x\right)+\left(36x-8\right).
7x\left(9x-2\right)+4\left(9x-2\right)
Factor out 7x in the first and 4 in the second group.
\left(9x-2\right)\left(7x+4\right)
Factor out common term 9x-2 by using distributive property.
63x^{2}+22x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-22±\sqrt{22^{2}-4\times 63\left(-8\right)}}{2\times 63}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-22±\sqrt{484-4\times 63\left(-8\right)}}{2\times 63}
Square 22.
x=\frac{-22±\sqrt{484-252\left(-8\right)}}{2\times 63}
Multiply -4 times 63.
x=\frac{-22±\sqrt{484+2016}}{2\times 63}
Multiply -252 times -8.
x=\frac{-22±\sqrt{2500}}{2\times 63}
Add 484 to 2016.
x=\frac{-22±50}{2\times 63}
Take the square root of 2500.
x=\frac{-22±50}{126}
Multiply 2 times 63.
x=\frac{28}{126}
Now solve the equation x=\frac{-22±50}{126} when ± is plus. Add -22 to 50.
x=\frac{2}{9}
Reduce the fraction \frac{28}{126} to lowest terms by extracting and canceling out 14.
x=-\frac{72}{126}
Now solve the equation x=\frac{-22±50}{126} when ± is minus. Subtract 50 from -22.
x=-\frac{4}{7}
Reduce the fraction \frac{-72}{126} to lowest terms by extracting and canceling out 18.
63x^{2}+22x-8=63\left(x-\frac{2}{9}\right)\left(x-\left(-\frac{4}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{9} for x_{1} and -\frac{4}{7} for x_{2}.
63x^{2}+22x-8=63\left(x-\frac{2}{9}\right)\left(x+\frac{4}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
63x^{2}+22x-8=63\times \frac{9x-2}{9}\left(x+\frac{4}{7}\right)
Subtract \frac{2}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
63x^{2}+22x-8=63\times \frac{9x-2}{9}\times \frac{7x+4}{7}
Add \frac{4}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
63x^{2}+22x-8=63\times \frac{\left(9x-2\right)\left(7x+4\right)}{9\times 7}
Multiply \frac{9x-2}{9} times \frac{7x+4}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
63x^{2}+22x-8=63\times \frac{\left(9x-2\right)\left(7x+4\right)}{63}
Multiply 9 times 7.
63x^{2}+22x-8=\left(9x-2\right)\left(7x+4\right)
Cancel out 63, the greatest common factor in 63 and 63.
x ^ 2 +\frac{22}{63}x -\frac{8}{63} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 63
r + s = -\frac{22}{63} rs = -\frac{8}{63}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{11}{63} - u s = -\frac{11}{63} + u
Two numbers r and s sum up to -\frac{22}{63} exactly when the average of the two numbers is \frac{1}{2}*-\frac{22}{63} = -\frac{11}{63}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{11}{63} - u) (-\frac{11}{63} + u) = -\frac{8}{63}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{63}
\frac{121}{3969} - u^2 = -\frac{8}{63}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{63}-\frac{121}{3969} = -\frac{625}{3969}
Simplify the expression by subtracting \frac{121}{3969} on both sides
u^2 = \frac{625}{3969} u = \pm\sqrt{\frac{625}{3969}} = \pm \frac{25}{63}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{11}{63} - \frac{25}{63} = -0.571 s = -\frac{11}{63} + \frac{25}{63} = 0.222
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}